Skip to main content
Log in

Performance of Methanol Oxidation Catalysts with Varying Pt:Ru Ratio as a Function of Temperature

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes the effects of varying the Pt to Ru ratio in carbon-supported catalysts for methanol oxidation as a function of temperature. Previously these effects were studied in isolation, but now it is shown that the composition of a given catalyst as a function of temperature is extremely important for its activity towards methanol oxidation. Platinum rich 3:2 atomic ratio catalysts perform better than a 1:1 catalyst at 25 °C, where only Pt is believed to be active towards methanol dehydrogenation, since this process is a highly thermally activated process on Ru sites. This result is reversed at 65 °C, where the 1:1 catalyst displays much higher currents across the entire range of polarization. This may result from methanol dehydrogenation occurring on both Ru and Pt sites at higher temperatures. At an intermediate temperature, 45 °C, the 3:2 catalyst is seen to perform better at lower current values, while the 1:1 catalyst is superior at higher current densities, with the crossover occurring at 62 A g−1. As a consequence, when designing fuel cell catalysts, the composition of the catalyst employed should be tailored with respect to the exact operating conditions, in order to promote optimum fuel cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Carrette, K.A. Friedrich and U. Stimming, Chem. Phys. Chem. 1 (2000) 162.

    Google Scholar 

  2. L. Carrette, J. Collins, A. Dickinson and U. Stimming, Bunsen-Magazin, Deutsche Bunsen-Gesellschaft fuer Physikalische Chemie (in English) 2 (2000) 27.

    Google Scholar 

  3. T. Schultz, S. Zhou and K. Sundmacher, Chem. Eng. Technol. 24(12) (2001) 1223.

    Google Scholar 

  4. S. Wasmus and A. Küver, J. Electroanal. Chem. 461 (1999) 14.

    Google Scholar 

  5. X. Ren, P. Zelenay, S. Thomas, J. Davey and S. Gottesfeld, J. Power Sources 86 (2000) 111.

    Google Scholar 

  6. A.S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells 1 (2001) 133.

    Google Scholar 

  7. G.J.K. Acres, J.C. Frost, G.A. Hards, R.J. Potter, T.R. Ralph, D. Thompsett, G.T. Burstein and G.J. Hutchings, Catal. Today 38(4) (1997) 393.

    Google Scholar 

  8. H.A. Gasteiger, N. Markovic, P.N. Ross, Jr and E.J. Cairns, J. Electrochem. Soc. 141 (1994) 1795.

    Google Scholar 

  9. M. Watanabe and S. Motoo, J. Electroanal. Chem. 60 (1975) 275.

    Google Scholar 

  10. A.K. Shukla, P.A. Christensen, A.J. Dickinson and A. Hamnett, J. Power Sources 76 (1998) 54.

    Google Scholar 

  11. X. Ren, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) L12.

    Google Scholar 

  12. M.K. Ravikumar and A.K. Shukla, J. Electrochem. Soc. 143 (1996) 2601.

    Google Scholar 

  13. P. Argyropoulos, K. Scott and W.M. Taama, Electrochim. Acta 44 (1999) 3575.

    Google Scholar 

  14. A.S. Arico, P.L. Antonucci, E. Modica, A. Baglio, H. Kim and V. Antonucci, Electrochim. Acta 47 (2002) 3723.

    Google Scholar 

  15. T.J. Schmidt, M. Noeske, H.A. Gasteiger and R.J. Behm, J. Electrochem. Soc. 145 (1998) 925.

    Google Scholar 

  16. T.J. Schmidt, H.A. Gasteiger, G.D. Staeb, P.M. Urban, D.M. Kolb and R.J. Behm, J. Electrochem. Soc. 145 (1998) 2354.

    Google Scholar 

  17. T. Iwasita, H. Hoster, A. John-Anacker, W.F. Lin and W. Vielstich, Langmuir 16(2) (2000) 522.

    Google Scholar 

  18. T. Frelink, W. Visscher and J.A.R. van Veen, Surf. Sci. 335 (1995) 353.

    Google Scholar 

  19. T. Frelink, W. Visscher and J.A.R. van Veen, Langmuir 12 (1996) 3702.

    Google Scholar 

  20. Y. Takasu, F. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki and W. Sugimoto, J. Electrochem. Soc. 147 (2000) 4421.

    Google Scholar 

  21. J.B. Goodenough, R. Manoharan, A.K. Shukla and K.V. Ramesh, Chem. Mater. 1 (1989) 391.

    Google Scholar 

  22. D. Chu and S. Gilman, J. Electrochem. Soc. 143 (1996) 1685.

    Google Scholar 

  23. B. Demishima, H.T. Mishima and G. Castro, Electrochim. Acta 40 (1995) 2491.

    Google Scholar 

  24. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau and J.M. Leger, J. Power Sources 105 (2002) 283.

    Google Scholar 

  25. Z. Jusys, J. Kaiser and R.J. Behm, Electrochim. Acta 47 (2002) 3693.

    Google Scholar 

  26. A.J. Dickinson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich and U. Stimming, Electrochim. Acta 47 (2002) 3733.

    Google Scholar 

  27. A.J. Dickinson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich and U. Stimming, To be published.

  28. K.A. Friedrich, K.P. Geyzers, A.J. Dickinson and U. Stimming, J. Electroanal. Chem. 524–525 (2002) 261.

    Google Scholar 

  29. A.S. Arico, V. Baglio, A. Di Blasi, E. Modica, P.L. Antonucci and V. Antonucci, J. Electroanal. Chem. 557 (2003) 167.

    Google Scholar 

  30. A.K. Shukla, A.S. Arico, K.M. El-Khatib, H. Kim, P.L. Antonucci and V. Antonucci, Appl. Surf. ci. 137 (1999) 20.

    Google Scholar 

  31. A.J. Dickinson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich and U. Stimming, To be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, A., Carrette, L., Collins, J. et al. Performance of Methanol Oxidation Catalysts with Varying Pt:Ru Ratio as a Function of Temperature. Journal of Applied Electrochemistry 34, 975–980 (2004). https://doi.org/10.1023/B:JACH.0000042668.61391.a4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000042668.61391.a4

Navigation