Journal of Applied Electrochemistry

, Volume 34, Issue 8, pp 857–866 | Cite as

Development of an Electrodeposited Nanomold from Compositionally Modulated Alloys

  • Che-Yih Lim
  • Q. Huang
  • X. Xie
  • A. Safir
  • S.A. Harfenist
  • R. Cohn
  • E.J. Podlaha
Article

Abstract

Electrodeposited multilayers of NiCu/Cu and NiFeCu/Cu were examined for nanoimprinting applications. Layer sizes on the order of 100 nm were deposited and the copper layer etched. Current efficiency and layer composition of electrolytes having different pH values were examined utilizing a rotating disk electrode. Due to large grain growth in the NiCu/Cu system, the bilayers resulted in a macroscopic waviness of the layers. Adding Fe in a small concentration successfully produced straight layers. As an example of the replication technique, the metal multilayer-etched stamp was used to cast the multilayer image in rubber and emboss it in Teflon®.

electrodeposition multilayers NiCu/Cu NiFeCu/Cu nanoimprinting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Hirai and Y. Tanaka, J. Photopolymer Sci. Technol. 15(3) (2002) 474.Google Scholar
  2. 2.
    S.Y. Chou, Sci. Spectra 10 (1998) 38.Google Scholar
  3. 3.
    S. Zankovych, I. Maximov, I. Shorubalko, J. Seekamp, M. Beck, S. Romanov, D. Reuter, P. Schafmeister, A.D. Wieck, J. Ahopelto, C.M. Sotomayor Torres and L. Montelius, Microelectron. Eng. 67–68 (2003) 214.Google Scholar
  4. 4.
    K.D. Bird and M. Schlesinger, J. Electrochem. Soc. 142 (1995) L65.Google Scholar
  5. 5.
    E. Toth-Kadar, L. Peter, T. Becsei, J. Toth, L. Pogany, T. Tarnoczi, P. Kamasa, I. Bakonyi, G. Lang, A. Cziraki and W. Schwarzacher, J. Electrochem. Soc. 147 (2000) 3311.Google Scholar
  6. 6.
    P. Nallet, E. Chassaing, M.G. Walls and M.J. Hytch, J. Appl. Phys. 79 (1996) 6884.Google Scholar
  7. 7.
    Y. Jyoko, S. Kashiwabara and Y. Hayashi, J. Electrochem. Soc. 144 (1997) L5.Google Scholar
  8. 8.
    E. Chassaing, A. Morrone and J.E. Schmidt, J. Electrochem. Soc. 146 (1999) 1794.Google Scholar
  9. 9.
    L. Peter, A. Cziraki, L. Pogany, Z. Kupay, I. Bakonyi, M. Uhlemann, M. Herrich, B. Arnold, T. Bauer and K. Wetzig, J. Electrochem. Soc. 148 (2001) C168.Google Scholar
  10. 10.
    M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes and W. Schwarzacher, Appl. Phys. Lett. 63 (1993) 2144.Google Scholar
  11. 11.
    M. Alper, K. Attenborough, V. Baryshey, R. Hart and D.S. Lashmore, J. Appl. Phys. 75 (1994) 6543.Google Scholar
  12. 12.
    M. Alper, W. Schwarzacher and S.J. Lane, J. Electrochem. Soc. 144 (1997) 2346.Google Scholar
  13. 13.
    A.P. O'Keefe, O.I. Kasyutich, W. Schwarzacher, L.S. de Oliveira and A.A. Pasa, Appl. Phys. Lett 73 (1998) 1002.Google Scholar
  14. 14.
    O.I. Kasyutich, W. Schwarzacher, V.M. Fedosyuk, P.A. Laskarzhevskiy and A.I. Masliy, J. Electrochem. Soc. 147 (2000) 2964.Google Scholar
  15. 15.
    P.L. Cavallotti, D. Manara, R. Vallauri, A. Vicenzo, J. Machado da Silva and M.A. Sa, in L.T. Romankiw, S. Krognelb and C.H. Ahn (Eds), Magnetic Materials, Processes, and Devices', PC 98-20 (The Electrochemical Society Proceedings Series, Pennington, NJ, 1998), P.156.Google Scholar
  16. 16.
    E. Chassaing, P. Nallet and M.F. Trichet, J. Electrochem. Soc. 143 (1996) L98.Google Scholar
  17. 17.
    L.T. Romankiw and D.J. Olsen, in L.T. Romankiw and D.A. Hermon, Jr. (Eds), 'Magnetic Materials, Processes, and Devices', PV 90-8, (The Electrochemical Society Proceedings Series, Pennington, NJ, 1990), p. 339.Google Scholar
  18. 18.
    K. Attenborough, R. Hart, S.J. Lane, M. Alperand and W. Schwarzacher, J. Magn. Magn. Mater. 148 (1995) 335.Google Scholar
  19. 19.
    Q. Huang, D.P. Young, J.Y. Chan, J. Jiang and E.J. Podlaha, J. Electrochem. Soc. 149(6) (2002) C349.Google Scholar
  20. 20.
    D. Simunovich, M. Schlesinger and D.D. Snyder, J. Electrochem. Soc. 141(1) (1994) L10.Google Scholar
  21. 21.
    Ch. B nhÔ te, Ph.D. Disseration, Ecole Polytechnique Federale de Lausanne, Switzerland (1998). Jap. J. Appl. Phys. 40(10) (2001) 5961.ÔGoogle Scholar
  22. 23.
    R. Perez and J. Gomez, Microscopy Research and Technique 40(1) (1998) 10.Google Scholar
  23. 24.
    T. Hasegawa, S. Aria, N. Kaneko and N. Shinohara, Annual Meeting of the Electrochemical Society of Japan Proceedings, 2E19, p. 89, (2001).Google Scholar
  24. 25.
    S. Aria, T. Hasegawa and N. Kaneko, J. Electrochem. Soc. 150(11) (2003) C798.Google Scholar
  25. 26.
    S.D. Leith and Schwartz, J. Micromech. Microeng. 9 (1999) 97.Google Scholar
  26. 27.
    J.M. Brownlow, J. Appl. Phys. 38 (1967) 1440.Google Scholar
  27. 28.
    L.T. Romankiw,Proceedings of Second International Symposium on Magnetic Materials, Process and Devices, PV92-10 (The Electrochemical Society proceedings series, Pennington, NJ, 1992), p.367.Google Scholar
  28. 29.
    P.E. Bradley and D. Landolt, Electrochim. Acta 45(7) (1999) 1077.Google Scholar
  29. 30.
    Ch. BÔ nhÔte and D. Landolt, Electrochim. Acta 42(15) (1997) 2407.Google Scholar
  30. 31.
    L. Giuliani and M. Lazzari, Electrochimica Metallorum. 3(1) (1968) 45.Google Scholar
  31. 32.
    C. Brenner, 'Electrodeposition of Alloys' (A) (Academic Press, New York, 1963).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Che-Yih Lim
    • 1
  • Q. Huang
    • 1
  • X. Xie
    • 2
  • A. Safir
    • 3
  • S.A. Harfenist
    • 2
  • R. Cohn
    • 3
  • E.J. Podlaha
    • 1
  1. 1.Gordon and Mary Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Geology DepartmentLouisiana State UniversityBaton RougeUSA
  3. 3.ElectroOptics Research InstituteUniversity of LouisvilleLouisvilleUSA

Personalised recommendations