Electrooxidation of Aqueous p-Methoxyphenol on Lead Oxide Electrodes

Abstract

Oxidation of p-methoxyphenol (pmp) in aqueous solution on bismuth-doped lead oxide was studied, and the effects of the initial pmp concentration, applied potential and hydrodynamic conditions upon the oxidation rate were identified. Under all conditions studied, the concentration decay of pmp during electrooxidation follows first—order reaction kinetics. Through analysis of rotating ring-disc currents, the faradaic efficiencies for oxidation at various concentrations of pmp in solution were determined. Using u.v.—vis. and H1RMN spectroscopy for solution analysis, it is shown that partial oxidation of pmp occurs in chloride-free aqueous solutions. The principal products were p-benzoquinone and maleic acid, with low production of CO2 up to 1000 C dm−3 charge. Mineralization to CO2 was considerably improved upon addition of chloride ions to the solution. In situ FTIR spectra of the electrode surface during electrolysis indicated that the presence of chloride ions enhances the mineralization of pmp by reaction of benzoquinone with anodically generated hypochlorite.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. Sharifian and D.W. Kirk, J. Electrochem. Soc. 133 (1986) 921.

    CAS  Google Scholar 

  2. 2.

    M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 140 (1993) 1534.

    CAS  Google Scholar 

  3. 3.

    B.J. Hwang and K.L. Lee, J. Appl. Electrochem. 26 (1996) 153.

    Article  CAS  Google Scholar 

  4. 4.

    N.B. Tahar and A. Savall, J. Appl. Electrochem. 29 (1999) 277.

    CAS  Google Scholar 

  5. 5.

    Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 23 (1993) 108.

    Article  CAS  Google Scholar 

  6. 6.

    M. Gattrell and D.W. Kirk, J. Electrochem. Soc. 140 (1993) 903.

    CAS  Google Scholar 

  7. 7.

    D.C. Johnson, J. Feng and L.L.Houk, Electrochim. Acta 46 (2000) 323.

    Article  CAS  Google Scholar 

  8. 8.

    A.M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, Electrochim. Acta 46 (2000) 389.

    Article  CAS  Google Scholar 

  9. 9.

    A.M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem. 29 (1999) 147.

    Article  CAS  Google Scholar 

  10. 10.

    J.D. Roogers, W. Jedral and N.J. Bunce, Environ. Sci. Technol. 33 (1999) 1453.

    Google Scholar 

  11. 11.

    B. Fleszar and J. Ploszynska, Electrochim. Acta 30 (1985) 31.

    Article  CAS  Google Scholar 

  12. 12.

    N.B. Tahar and A. Savall, J. Electrochem. Soc. 145 (1998) 3427.

    CAS  Google Scholar 

  13. 13.

    J.E. Vitt and D.C. Johnson, J. Electrochem. Soc. 139 (1992) 774.

    CAS  Google Scholar 

  14. 14.

    K. Jüttner, U. Galla and H. Schmieder, Electrochim. Acta 45 (2000) 2575.

    Article  Google Scholar 

  15. 15.

    C. Bock and B. MacDougall, J. Electroanal. Chem. 491 (2000) 48.

    Article  CAS  Google Scholar 

  16. 16.

    L. Gherardini, P.A. Michaud and M. Panizza, Ch. Comninellis and N. Vatistas, J. Electrochem. Soc. 148 (2001) D78.

    Article  CAS  Google Scholar 

  17. 17.

    Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.

    CAS  Google Scholar 

  18. 18.

    O. Simond, V. Schaller and Ch. Comninellis, Electrochim. Acta 42 (1997) 2009.

    CAS  Google Scholar 

  19. 19.

    G. Foti, D. Gandini. Ch. Comninellis, A. Perret and W. Haenni, Electrochem. Solid State Lett. 2 (1999) 228.

    CAS  Google Scholar 

  20. 20.

    M.S. Ureta-Zañartu, P. Bustos, M.C. Diez, M.L. Mora and C. Gutierrez, Electrochim. Acta 46 (2001) 2545.

    Article  Google Scholar 

  21. 21.

    F. Bonfatti, A. De Battisti, S. Ferro, G. Lodi and S. Osti, Electrochim. Acta 46 (2000) 305.

    Article  CAS  Google Scholar 

  22. 22.

    Ch. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.

    Article  CAS  Google Scholar 

  23. 23.

    W.L. LaCourse, Y. Hsiao and D.C. Johnson. J. Electrochem. Soc. 136 (1989) 3714.

    CAS  Google Scholar 

  24. 24.

    ‘The Sadtler Handbook of Ultraviolet Spectra’, Sadtler Research Laboratories (1979).

  25. 25.

    J.W. Robinson, 'Handbook of Spectroscopy', Vol. II (CRC Press, OH, 1974).

    Google Scholar 

  26. 26.

    E.A. Braude, J. Chem. Soc. 45 (1945) 490.

    Google Scholar 

  27. 27.

    I. Rodríguez, B.R. Scharifker and J. Mostany, J. Electroanal. Chem. 491 (2000) 117.

    Article  Google Scholar 

  28. 28.

    L. Clesceri, ‘Métodos Normalizados para el Análisis de Aguas Potables y Residuales’ (Diaz de Santos, Madrid, 1989), p. 556.

    Google Scholar 

  29. 29.

    N.D. Popovic and D.C. Johnson, Anal. Chem. 70 (1998) 468.

    Article  CAS  Google Scholar 

  30. 30.

    Y. Hu, Y.V. Tolmachev and D.A. Scherson, J. Electroanal. Chem. 468 (1999) 64.

    Article  CAS  Google Scholar 

  31. 31.

    I. Ilisz, Z. Laszlo and A. Dombi, Applied Catálisis A: General 180 (1999) 25.

    CAS  Google Scholar 

  32. 32.

    A.J. Bard and L.R. Faulkner, ‘Electrochemical methods: Fundamentals and Applications’ (John Wiley & Sons, New York, 2nd edn, 2001).

    Google Scholar 

  33. 33.

    C. Borras, T. Laredo and B.R. Scharifker, Electrochim. Acta 48 (2003) 2775.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Borrás.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borrás, C., Rodríguez, P., Laredo, T. et al. Electrooxidation of Aqueous p-Methoxyphenol on Lead Oxide Electrodes. Journal of Applied Electrochemistry 34, 583–589 (2004). https://doi.org/10.1023/B:JACH.0000021922.73582.85

Download citation

  • electrocatalysis
  • metal oxide anode
  • oxidation of organics
  • p-methoxyphenol