Skip to main content
Log in

Electrochemical impedance spectroscopy of the alkaline manganese dioxide electrode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Two-probe electrochemical impedance spectroscopy measurements were carried out on the electrolytic manganese dioxide electrode in concentrated KOH electrolytes under a variety of experimental conditions. These included varying the electrode thickness and compaction pressure, electrolyte content and concentration, degree of manganese dioxide reduction and the presence of TiO2 (anatase) as an additive. The overall electrode impedance was found to decrease when thin electrodes, prepared under high compaction pressures, with an excess of electrolyte, were used. The impedance of the EMD/electrolyte interface was also minimized when 5.0 M KOH was used as the electrolyte. This correlates with a maximum in electrolyte conductivity. The electrode impedance also increased as the degree of EMD reduction was increased, as was expected. Under these experimental conditions the electrode impedance increased in the presence of TiO2 (anatase), which has negative implications for its commercial use. This conclusion was reached despite the differences in experimental conditions between this work and in commercial applications. An equivalent circuit was also derived and used as an aid in interpreting the impedance data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.F. Yao, N. Gupta and H.S. Wroblowa, J. Electroanal. Chem. 223 (1987) 107.

    Google Scholar 

  2. J. Daniel-Ivad and K. Kordesch, in P.D. Bennett and S. Gross (Eds), 'Proceedings of the Symposium on Aqueous Batteries' Vol. 96-16, (The Electrochemical Society, Inc., 1996) p. 11.

  3. A. Kozawa and J.F. Yeager, J. Electrochem. Soc. 112 (1965) 959.

    Google Scholar 

  4. A. Kozawa, T. Kalnoki-Kis and J.F. Yeager, J. Electrochem. Soc. 113 (1966) 405.

    Google Scholar 

  5. A. Kozawa and R.A. Powers, J. Electrochem. Soc. 113 (1966) 870.

    Google Scholar 

  6. A. Kozawa and R.A. Powers, Electrochem. Tech. 5 (1967) 535.

    Google Scholar 

  7. A. Kozawa and R.A. Powers, J. Electrochem. Soc. 115 (1968) 122.

    Google Scholar 

  8. A. Kozawa and J.F. Yeager, J. Electrochem. Soc. 115 (1968) 1003.

    Google Scholar 

  9. A. Kozawa and R.A. Powers, J. Chem. Ed. 49 (1972) 587.

    Google Scholar 

  10. D.A.J. Swinkels, K.E. Anthony, P.M. Fredericks and P.R. Osborn, J. Electroanal. Chem. 168 (1984) 433.

    Google Scholar 

  11. Y. Chabre and J. Pannetier, Prog. Solid State Chem. 23 (1995) 1.

    Google Scholar 

  12. J. Fitzpatrick and F.L. Tye, J. Appl. Electrochem. 21 (1991) 130.

    Google Scholar 

  13. J.E. Mieczkowski and S.P. Markfort, U.S. Patent 5,342,712 (1994).

    Google Scholar 

  14. J.E. Mieczkowski and M.W. Howard, U.S. Patent 5,516,604 (1996).

    Google Scholar 

  15. S.M. Davis, C.P. Haines, A.A. Leef and P.R. Moses, U.S. Patent 5,532,085 (1996).

    Google Scholar 

  16. K.J. Vetter and N. Jaeger, Electrochim. Acta 11 (1966) 401.

    Google Scholar 

  17. B.A. Boukamp, Solid State Ionics 18 (1986) 136.

    Google Scholar 

  18. B.A. Boukamp, Solid State Ionics 20 (1986) 30.

    Google Scholar 

  19. D.D. MacDonald, in R. Varma and J.R. Selman (Eds),'Techniques for Characterization of Electrodes and Electrochemical Processes', Vol. 11 (J. Wiley and Sons, Inc., 1991).

  20. S.R. Narayanan, D.H. Shen, S. Surampudi, A.I. Attia and G. Halpert, J. Electrochem. Soc. 140 (1993) 1854.

    Google Scholar 

  21. C. Ho, I.D. Rastrick and R.A. Huggins, J. Electrochem. Soc. 127 (1980) 343.

    Google Scholar 

  22. J.E.B. Randles, Discuss. Faraday Soc. 1 (1947) 11.

    Google Scholar 

  23. J.R. MacDonald, Solid State Ionics 13 (1984) 147.

    Google Scholar 

  24. W. Scheider, J. Phys. Chem. 79 (1975) 127.

    Google Scholar 

  25. R. de Levie, Electrochim. Acta 10 (1965) 113.

    Google Scholar 

  26. M.G.S.R. Thomas, P.G. Bruce and J.B. Goodenough, J. Electrochem. Soc. 132 (1985) 1521.

    Google Scholar 

  27. P.W. Atkins, 'Physical Chemistry', (Oxford University Press, Oxford, 4th edn, 1990).

    Google Scholar 

  28. X. Xia, H. Li and Z.H. Chen, J. Electrochem. Soc. 136 (1989) 266.

    Google Scholar 

  29. S.W. Donne; Unpublished results.

  30. 'International Critical Tables of Numerical Data, Physics, Chemistry and Technology', (McGraw-Hill Book Co. New York, 1929).

  31. A.J. Bard and L.R. Faulkner, 'Electrochemical Methods: Fundamentals and Applications', (John Wiley and Sons, Inc., New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Donne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donne, S.W., Kennedy, J.H. Electrochemical impedance spectroscopy of the alkaline manganese dioxide electrode. Journal of Applied Electrochemistry 34, 159–168 (2004). https://doi.org/10.1023/B:JACH.0000009946.01158.ca

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000009946.01158.ca

Navigation