Journal of Applied Electrochemistry

, Volume 34, Issue 1, pp 47–53 | Cite as

Selective dissolution of brass in salt water

  • F.M. Al-KharafiEmail author
  • B.G. Ateya
  • R.M. Abd Allah


The selective dissolution of brass was studied using potentiodynamic polarization, coloumetric analysis and electrochemical impedance spectroscopy (EIS). Using coloumetric analysis, the partial currents iZn and iCu were measured under various potentials and chloride concentrations. Chloride ions promote the dissolution of Zn and Cu and hence increase the rate of dissolution of the alloy. At active potentials, zinc dissolves preferentially leaving the alloy surface enriched in copper. Under this condition, the polarization resistance of the interface and its double layer capacity increase with the time and extent of dissolution of the alloy. As the chloride concentration increases and/or the potential shifts in the noble direction, the rate of copper dissolution increases so that simultaneous dissolution of both components is observed. This increase in the rate of copper dissolution is enhanced by the higher stability of the copper chloride complex (CuCl2) compared to zinc chloride (ZnCl2).

brass chloride dealloying double layer capacity polarization resistance selective dissolution surface roughening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Pickering, Corros. Sci. 23 (1983) 1107.Google Scholar
  2. 2.
    H. Kaiser, in F. Mansfield (Ed), ‘Alloy Dissolution in Corrosion Mechanisms’ (Marcel Dekker, New York, 1987), p. 85.Google Scholar
  3. 3.
    C. van Orden, in R. Baboian (Ed), ‘Corrosion Tests and Standards: Application and Interpretation’ (ASTM 28-020095-27 (ASTM, Philadelphia, PA, 1995).Google Scholar
  4. 4.
    M.G. Fontana, ‘Corrosion Engineering’ (McGraw-Hill, New York, 3rd edn, 1986), p.86.Google Scholar
  5. 5.
    D.A. Jones, ‘Principles and Prevention of Corrosion’ (Prentice-Hall, Englewood Cliffs, NJ 2nd edn, 1996), p. 20.Google Scholar
  6. 6.
    N.W. Polan, in ‘Metals Handbook, Corrosion, Vol. 13’ (ASM International, Materials Park, OH, 9th edn, 1987).Google Scholar
  7. 7.
    Z. Liu, L. Lin, J. Xu and Y. Zhao, Chin. J. Mater. Res. (China) 14 (2000) 145.Google Scholar
  8. 8.
    L. Burzynska, Corros. Sci. 43 (2001) 1053.Google Scholar
  9. 9.
    A.A. Elwarraky, J. Mater. Sci. 31 (1196) 119.Google Scholar
  10. 10.
    R.K. Diannappa and S.M. Mayanna, Corros. Sci. 27 (1987) 349.Google Scholar
  11. 11.
    I. Singh, 'Anti-Corrosion, (March 1988), p. 4.Google Scholar
  12. 12.
    H.W. Pickering and P.J. Byrne, J. Electrochem. Soc. 116 (1969) 1492; 118 (1971) 209.Google Scholar
  13. 13.
    G.T. Burstein and G. Gao, J. Electrochem. Soc. 141 (1994) 912.Google Scholar
  14. 14.
    H. Martin, P. Carro, A. Hernandez Creus, J. Fernandez, P. Esparza, S. Gonzalez, R.C. Salvarezza and A.J. Arvia, J. Phys. Chem. 104B (2000) 8229.Google Scholar
  15. 15.
    C.E. Price, Mater. Perform. 34 (1995) 87.Google Scholar
  16. 16.
    A.M. Fenelon and C.B.B. Breslin, J. Appl. Electrochem. 31 (2001) 509.Google Scholar
  17. 17.
    K. Balakrishnan and V.K. Venkatesan, Werkst. Korros. 29 (1978) 113.Google Scholar
  18. 18.
    V.N. Chervyakov, A.P. Pchel'nikov and V.V. Losev, Elektrokhimiya (Russia) 27 (1991) 1647.Google Scholar
  19. 19.
    H.M. Shalaby, A. Al-Hashem, M. Lowther and J. Al-Besharah (Eds), ‘Industrial Corrosion and Corrosion Control Technology’ (Kuwait Institute for Scientific Research, Kuwait, 1996).Google Scholar
  20. 20.
    Samuel J. Lawrence and Richard L. Bodnar, Adv. Mater. Proces. (Feb. 1997) 29.Google Scholar
  21. 21.
    N. De Zoubov, C. Vanleugenhaghe and M. Pourbaix, in M. Pourbaix (Ed), ‘Atlas of Electrochemical Equilibria in Aqueous Media' (NACE, Houston, 1974), p. 384.Google Scholar
  22. 22.
    N. De Zoulov and M. Pourbaix, in[21], p. 406.Google Scholar
  23. 23.
    M.E. Walton and P.A. Brook, Corros. Sci. 17 (1977) 593.Google Scholar
  24. 24.
    L.H. Jenkins, J. Electrochem. Soc. 117 (1970) 630.Google Scholar
  25. 25.
    A.L. Bacarella and J.C. Griess, J. Electrochem. Soc. 120 (1973) 459.Google Scholar
  26. 26.
    J.O'M. Bockris, B.T. Rubin, A. Despic and B. Lovrecek, Electrochim. Acta 17 (1972) 973.Google Scholar
  27. 27.
    C. Kato, B.G. Ateya, J.E. Castle and H.W. Pickering, J. Electrochem. Soc. 127 (1980) 1881.Google Scholar
  28. 28.
    C.H. Bonfiglio, A.C. Albaya and A.O. Cobo, Corros. Sci. 13 (1973) 717.Google Scholar
  29. 29.
    D. Tromans and G. Li, Electrochem. Sol. St. Lett. 5 (2002) B5.Google Scholar
  30. 30.
    J.A. Dean, (Ed), ‘Lange’s Handbook of Chemistry’ (McGraw-Hill, New York, 14th edn, 1992), p. 8.83.Google Scholar
  31. 31.
    F.M. Al-Kharafi and B.G. Ateya, J. Electrochem. Soc. 149 (2002) B206.Google Scholar
  32. 32.
    H.W. Pickering, J. Electrochem. Soc. 115 (1968) 690.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceKuwait UniversityKuwait

Personalised recommendations