Journal of Applied Electrochemistry

, Volume 34, Issue 1, pp 9–17 | Cite as

Relation between potential and catalytic activity of rhodium in propylene combustion

  • G. Fóti
  • I. Bolzonella
  • D. Bachelin
  • CH. Comninellis


The relation between the catalyst potential and the catalytic performance has been investigated in the gas-phase combustion of propylene with oxygen over rhodium catalysts at 375 °C. The rhodium catalyst, deposited on yttria-stabilized zirconia (YSZ) solid electrolyte, also served as working electrode in the electrochemical cell. Under open-circuit conditions, the measured catalyst potential was found to be a sensitive indicator of the oxidation state of the rhodium catalyst, which influences the catalytic reaction rate dramatically and depends strongly both on the method of catalyst film preparation and on the composition of the reacting gas mixture. In turn, under closed-circuit conditions, the applied catalyst potential is a convenient tool to maintain the catalyst in its more active, reduced form and to control its catalytic performance. The activity of atomic oxygen at the three-phase boundary (tpb) during open-circuit catalytic reaction was estimated from solid electrolyte potentiometric (SEP) measurements, in good agreement with the average surface oxidation state obtained from XRD and XPS analyses. O/Rh atomic ratios higher than stoichiometric were found by XPS at the outer surface of the catalysts suggesting a strong open circuit O2− spillover due to strong metal support interactions (SMSI) and a concomitant extension of the electric double layer to the gas-exposed catalyst surface, similarly to emersed electrodes in aqueous electrochemistry. Applying potentials up to several hundreds of mV, highly nonfaradaic promotion of propylene combustion was achieved. Electrochemical promotion of catalysis (EPOC) was most efficient at stoichiometric gas composition, that is, close to the limit of surface reduction, and with the catalyst exhibiting the smallest O2− spillover population at open-circuit conditions.

catalyst potential electrochemical promotion ethylene combustion rhodium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.W. Cant and W.K. Hall, J. Catal. 16 (1970) 220.Google Scholar
  2. 2.
    S.H. Oh and J.E. Carpenter, J. Catal. 80 (1983) 472.Google Scholar
  3. 3.
    G.L. Kellogg, Surf. Sci. 171 (1986) 359.Google Scholar
  4. 4.
    D.G. Castner, B.A. Sexton and G.A. Somorjai, Surf. Sci. 71 (1978) 519.Google Scholar
  5. 5.
    H.C. Yao, S. Japar and M. Shelef, J. Catal. 50 (1977) 407.Google Scholar
  6. 6.
    C. Wagner, Adv. Catal. 21 (1970) 323.Google Scholar
  7. 7.
    C.G. Vayenas, B. Lee and J. Michaels, J. Catal. 66 (1980) 36.Google Scholar
  8. 8.
    I.V. Yentekakis, S. Neophytides and C.G. Vayenas, J. Catal. 111 (1988) 152.Google Scholar
  9. 9.
    C.G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem. 92 (1988) 5083.Google Scholar
  10. 10.
    C.G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda and D. Tsiplakides, ‘Electrochemical Activation of Catalysis’ (Kluwer Academic/Plenum, New York, 2001).Google Scholar
  11. 11.
    G. Fóti, I. Bolzonella and Ch. Comninellis, ‘Electrochemical promotion of catalysis’ in B.E. Conway, C.G. Vayenas and R.E. White (Eds) ‘Modern Aspects of Electrochemistry’ (Kluwer/ Plenum, New York, 2003), 36.Google Scholar
  12. 12.
    G. Fóti, S. Wodiunig and Ch. Comninellis, Curr. Top. Electrochem. 7 (2000) 1.Google Scholar
  13. 13.
    J.O'M. Bockris, A.K.N. Reddy and M. Gamboa-Aldecco, in ‘Modern Electrochemistry’ (Kluwer Academic/Plenum, New York, 2000).Google Scholar
  14. 14.
    K. Juttner, U. Galla and H. Schmieder, Electrochim. Acta 45 (2000) 2575.Google Scholar
  15. 15.
    G. Ertl, H. Knötzinger and J. Weitkamp, ‘Handbook of Catalysis’ (VCH, Weinheim, 1997).Google Scholar
  16. 16.
    J. Pritchard, Nature 343 (1990) 592.Google Scholar
  17. 17.
    G.-Q. Lu and A. Wieckowski, Curr. Opin. Colloid Interface Sci. 5 (2000) 95.Google Scholar
  18. 18.
    E. Varkaraki, J. Nicole, E. Plattner, Ch. Comninellis and C.G. Vayenas, J. Appl. Electrochem. 25 (1995) 978.Google Scholar
  19. 19.
    J. Nicole, D.T. Tsiplakides, S. Wodiunig and Ch. Comninellis, J. Electrochem. Soc. 144 (1997) L312.Google Scholar
  20. 20.
    J. Nicole and Ch. Comninellis, Solid State Ionics 136-137 (2000) 687.Google Scholar
  21. 21.
    S. Wodiunig ‘Electrochemical Promotion of Ruthenium Oxide Catalysts for the Gas Phase Combustion of Ethylene’, Thesis 2138, EPFL, Lausanne (2000).Google Scholar
  22. 22.
    S. Wodiunig, F. Bokeloh, J. Nicole and Ch. Comninellis, Electrochem. Solid-State Lett. 2 (1999) 281.Google Scholar
  23. 23.
    S. Wodiunig and Ch. Comninellis, J. Eur. Ceram. Soc. 19 (1999) 931.Google Scholar
  24. 24.
    S. Wodiunig, Ch. Comninellis and C. Mousty, in E.J. Rudd and C.W. Walton (Eds), ‘Energy and Electrochemical Processing for a Cleaner Environment’, The Electrochemical Society Proceedings Series, Pennington, NJ, 147 (1997).Google Scholar
  25. 25.
    S. Wodiunig, V. Patsis and Ch. Comninellis, Solid State Ionics 136-137 (2000) 813.Google Scholar
  26. 26.
    Z.L. Zhang, V.A. Tsipouriari, A.M. Efstathiou and X.E. Verykios, J. Catal. 158 (1996) 51.Google Scholar
  27. 27.
    S.C. Chuang, R. Krishnamurthy and C-D. Tan, Colloids Surf. A 105 (1995) 35.Google Scholar
  28. 28.
    G.R. Bamwenda, A. Obuchi, A. Ogata, J. Oi, S. Kushiyama and K. Mizuno, React. Kinet. Catal. Lett. 63 (1998) 53.Google Scholar
  29. 29.
    P. Mériaudeau, O.H. Ellestad, M. Dufaux and C. Naccache, J. Catal. 75 (1982) 243.Google Scholar
  30. 30.
    F. Solymosi, I. Tombácz and M. Kocsis, J. Catal. 75 (1982) 78.Google Scholar
  31. 31.
    E.A. Efthimiadis, S.C. Christoforou, A.A. Nikolopoulos and I.A. Vasalos, Appl. Catal. B 22 (1999) 91.Google Scholar
  32. 32.
    R. Burch, P.K. Loader and N.A. Cruise, Appl. Catal. A 147 (1996) 375.Google Scholar
  33. 33.
    K. Rahkamaa and T. Salmi, Chem. Eng. Sci. 54 (1999) 4343.Google Scholar
  34. 34.
    C. Pliangos, I.V. Yentekakis, X.E. Verykios and C.G. Vayenas, J. Catal. 154 (1995) 124.Google Scholar
  35. 35.
    R.V. Stuart, ‘Vacuum Technology, Thin Films and Sputtering: an Introduction’ (Academic Press, New York, 1983).Google Scholar
  36. 36.
    A. Kaloyannis, C. Pliangos, I.V. Yentekakis and C.G. Vayenas, Ionics 1 (1995) 159.Google Scholar
  37. 37.
    C. Pliangos, I.V. Yentekakis, V.G. Papadakis, C.G. Vayenas and X.E. Verykios, Appl. Catal. B 14 (1997) 161.Google Scholar
  38. 38.
    G. Fóti, O. Lavanchy and Ch. Comninellis, J. Appl. Electrochem. 30 (2000) 1223.Google Scholar
  39. 39.
    J. Nicole, D. Tsiplakides, C. Pliangos, X.E. Verykios, Ch. Comninellis and C.G. Vayenas, J. Catal. 204 (2001) 23.Google Scholar
  40. 40.
    S.B. Adler, J. Electrochem. Soc. 149 (2002) E166.Google Scholar
  41. 41.
    G. Fóti, V. Stankovic, I. Bolzonella and Ch. Comninellis, J. Electroanal. Chem. 532 (2002) 191.Google Scholar
  42. 42.
    J. Nicole, ‘Etude de la Promotion Électrochimique de l'Oxydation Catalytique de l'Éthylène sur des Oxydes Métalliques’, Thesis 1933, EPFL, Lausanne (1999).Google Scholar
  43. 43.
    L. Riekert, Ber. Bunsenges. Phys. Chem. 85 (1981) 297.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • G. Fóti
    • 1
  • I. Bolzonella
    • 1
  • D. Bachelin
    • 1
  • CH. Comninellis
    • 1
  1. 1.Institute of Chemical and Biological Process Science, School of Basic SciencesSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations