Skip to main content
Log in

Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reviews the most common reaction pathways for CO2 electroreduction proposed by various workers in recent years. Each pathway involves certain intermediate compounds and certain end products and thus the pathways promoted, within a specific process, can be deduced from which of these have been detected. There are considered to be four principal pathways, each based on one of the following reactions: (1) CO(g) formation via disproportionation, (2) •CO2 radical formation, (3) COOH(ad) formation and (4) the formation of reduced CO x y(ad) species giving a range of reduced CO2 end products. This paper places particular emphasis on the formation of HCOOH. The effects of electrocatalyst and process conditions on reaction pathways is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M.M. Halmann and M. Steinberg, 'Greenhouse Gas Carbon Dioxide Mitigation Science and Technology' (Lewis Publishers, Boca Raton, FL, 1999).

    Google Scholar 

  2. J. Houghton, 'Global Warming' (CUP, Cambridge, UK, 1997), p. 251.

    Google Scholar 

  3. R.P.S. Chaplin, The Reduction of Carbon Dioxide to Formate in a Solid Polymer Electrolyte Reactor, PhD thesis, (Exeter University, Exeter, UK, 2001).

    Google Scholar 

  4. B.I. Podlovchenko, E.A. Kolyadko and Sh. Lu, Electrokhimiya 30 (1994) 670.

    Google Scholar 

  5. Ch. Furuya, Chem. Abstr. 121 (1994) 21038a and 124 (1996) 17519c. Japanese patents JP 06 93 485 (1994) and JP 07 258 877 (1994).

    Google Scholar 

  6. N. Furuya, T. Yamazaki and M. Shibata, J. Electroanal. Chem. 431 (1997) 39.

    Google Scholar 

  7. M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma and L. Oniciu, J. Appl. Electrochem. 27 (1997) 875.

    Google Scholar 

  8. K. Ikeue, S. Nozaki, M. Ogawa and M. Anpo, Catal. Lett. 80 (2002) 11.

    Google Scholar 

  9. K. Ohta, Y. Ohguchi, S. Kaneco and T. Mizuno, Energy Sources 21 (1999) 467.

    Google Scholar 

  10. K. Hirota, D.A. Tryk, K. Hashimoto, M. Okawa and A. Fujishima, J. Electrochem. Soc. 145 (1998) L82.

    Google Scholar 

  11. R. Hinogami, Y. Nakamura, S. Yae and Y. Nakato, J. Phys. Chem. B 102 (1998) 974.

    Google Scholar 

  12. R. Hinogami, Y. Nakamura, S. Yae and Y. Nakato, Appl. Surf. Sci. 121-122 (1997) 301.

    Google Scholar 

  13. B.P. Sullivan, S.K. Krist and H.E. Guard (Eds), 'Electrochemical and Electrocatalytic Reduction of Carbon Dioxide' (Elsevier, Amsterdam, 1993).

    Google Scholar 

  14. B.I. Podlovchenko, E.A. Kolyadko and Sh. Lu, J. Electroanal. Chem. 373 (1994) 185.

    Google Scholar 

  15. Ch. Caix, S. Chardon-Noblat and A. Deronzier, J. Electroanal. Chem. 434 (1997) 163.

    Google Scholar 

  16. A.W.B. Aylmer-Kelly, A. Bewick, P.R. Cantrill and A.M. Tuxford, Faraday Discussion, Chem. Soc. 56 (1973) 96.

    Google Scholar 

  17. W.M. Ayers, Special Pub. Royal Society of Chemistry (1994) 365.

  18. K.S. Udupa, G.S. Subramanian and H.V.K. Udupa, Electrochim. Acta 16 (1971) 1593.

    Google Scholar 

  19. T. Mizuno, K. Ohta, A. Sasaki, T. Akai, M. Hirano and A. Kawabe, Energy Sources 17 (1995) 503.

    Google Scholar 

  20. B.R. Eggins, C. Ennis, R. McConnell and M. Spence, J. Appl. Electrochem. 27 (1997) 706.

    Google Scholar 

  21. Yu B. Vassiliev, V.S. Bagotzky, N.V. Osetpova, O.A. Khazova and N. Mayorova, J. Electroanal. Chem. 189 (1985) 271.

    Google Scholar 

  22. A. Kudo, Sh. Nakagawa, A. Tsuneto and T. Sakata, J. Electrochem. Soc. 140 (1993) 1541.

    Google Scholar 

  23. O. Koga and Y. Hori, Denki Kagaku 61 (1993) 812.

    Google Scholar 

  24. Y. Hori, A. Murata, R. Takahashi and Sh. Suzuki, J. Am. Chem. Soc. 109 (1987) 5022.

    Google Scholar 

  25. S. Komatsu, M. Tanaka, A. Okumura and A. Kungi, Electrochim. Acta 40 (1995) 745.

    Google Scholar 

  26. K. Hara, A. Kudo and T. Sakata, J. Electroanal. Chem. 391 (1995) 141.

    Google Scholar 

  27. H. Noda, Sh. Ikeda, Y. Oda and K. Ito, Chem. Lett. (1989) 289.

  28. H. De Jesus-Cardona, C. Del Moral and C.R. Cabrera, J. Electroanal. Chem. 513 (2001) 45.

    Google Scholar 

  29. D.P. Summers and K.W. Frese Jr., J. Electrochem. Soc. 135 (1988) 264.

    Google Scholar 

  30. G.Z. Kyriacou and A.K. Anagnostopoulos, J. Appl. Electrochem. 23 (1993) 483.

    Google Scholar 

  31. J. Lee and Y. Tak, Electrochim. Acta 46 (2001) 3015.

    Google Scholar 

  32. R.M. Hernandez, J. Marquez, O.P. Marquez, M. Choy, C. Ovalles, J.J. Garcia and B. Scharifker, J. Electrochem. Soc. 146 (1999) 4131.

    Google Scholar 

  33. K. Ito and S. Ikeda, Bull. Chem. Soc. Japan 60 (1987) 2517.

    Google Scholar 

  34. C. Amatore and J. Saveant, J. Am. Chem. Soc. 103 (1981) 5021.

    Google Scholar 

  35. K. Hirota, D.A. Tryk, T. Yamamoto, K. Hashimoto, M. Okawa and A. Fujishima, J. Phys. Chem. B. 102 (1998) 9834.

    Google Scholar 

  36. G.B. Stevens, T. Reda and B. Raguse, J. Electroanal. Chem. 526 (2002) 125.

    Google Scholar 

  37. Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett. (1985) 1695.

  38. S. Kaneco, R. Iwao, K. Iiba, S. Itoh, K. Ohta and T. Mizuno, Environ. Eng. Sci. 16 (1999) 131.

    Google Scholar 

  39. Y. Terunuma, A. Saitoh and Y. Momose, J. Electroanal. Chem. 434 (1997) 69.

    Google Scholar 

  40. N. Hoshi and Y. Hori, Electrochim. Acta 45 (2000) 4263.

    Google Scholar 

  41. N. Hoshi, S. Kawatani, M. Kudo and Y. Hori, J. Electroanal. Chem. 467 (1999) 67.

    Google Scholar 

  42. N. Hoshi, M. Kato and Y. Hori, J. Electroanal. Chem. 440 (1997) 283.

    Google Scholar 

  43. N. Hoshi, T. Suzuki and Y. Hori, J. Phys. Chem. B 101 (1997) 8520.

    Google Scholar 

  44. N. Hoshi, M. Noma, T. Suzuki and Y. Hori, J. Electroanal. Chem. 421 (1997) 15.

    Google Scholar 

  45. M.N. Mahmood, D. Masheder and C.J. Harty, J. Appl. Electrochem. 17 (1987) 1159.

    Google Scholar 

  46. Yu.B. Vassiliev, V.S. Bogotzky, N.V. Osetpova, O.A. Khazova and N. Mayorova, J. Electroanal. Chem. 189 (1985) 295.

    Google Scholar 

  47. M. Todoroki, K. Hara, A. Kudo and T. Sakata, J. Electroanal. Chem. 394 (1995) 199.

    Google Scholar 

  48. M. Spichiger-Ulmann and J. Augustynski, J. Chem. Soc. Faraday Trans. 181 (1985) 713.

    Google Scholar 

  49. F. Ko00leli, T. Ro00pke and C. Hamann, Synthe. Met. In press (2003).

  50. F. Ko00leli, T. Ro00pke and C. Hamann, Electrochim. Acta 48 (2003) 1595.

    Google Scholar 

  51. R. Aydin and F. Ko00leli, J. Electroanal. Chem. 535 (2003) 107.

    Google Scholar 

  52. H.A. Schwarz and R.W. Dodson, J. Phys. Chem. 93 (1989) 409.

    Google Scholar 

  53. S.C. Yeo and A. Eisenberg, J. Appl. Polym. Sci. 21 (1977) 875.

    Google Scholar 

  54. V.S. Bagotsky and Yu.B. Vassiliev, J. Electroanal. Chem. 271 (1985) 189.

    Google Scholar 

  55. H. Noda, Sh. Ikeda, Y. Oda, K. Imai, M. Maeda and K. Ito, Bull. Chem. Soc. Japan 63 (1990) 2459.

    Google Scholar 

  56. K. Ito and T. Murata, Bull. Nagoya Ind. Technol. 271 (1975) 369.

    Google Scholar 

  57. H.E. Ulery, J. Electrochem. Soc. 112 (1969) 1201.

    Google Scholar 

  58. M. Azuma, K. Hashimoto, M. Watanabe and T. Sakata, J. Electroanal. Chem. 260 (1989) 441.

    Google Scholar 

  59. K. Kara, A. Tsuneto, A. Kudo and T. Sakata, J. Electroanal. Chem. 434 (1997) 239.

    Google Scholar 

  60. H. Yano, F. Shirai, M. Nakayama and K.J. Ogura, J. Electroanal. Chem. 519 (2002) 93.

    Google Scholar 

  61. S. Kaneco, K. liba, K. Ohta and T. Mizuno, Energy Sources 22 (2000) 127.

    Google Scholar 

  62. K. Ohta, K. Suda, S. Kaneco and T. Mizuno, J. Electrochem. Soc. 147 (2000) 233.

    Google Scholar 

  63. S. Komatsu, T. Yanagihara, Y. Hiraga, M. Tanaka and A. Kunugi, Denki Kagaku 63 (1995) 217.

    Google Scholar 

  64. S. Ikeda, A. Hattori, M. Maeda, K. Ito and H. Noda, Electrochemistry 68 (2000) 257.

    Google Scholar 

  65. B.R. Eggins, E.M. Brown, C.A. McNeiu and Y. Grimshaw, Tetrahedron Lett. 29 (1988) 945.

    Google Scholar 

  66. S. Kaneco, R. Iwao, K. Iiba, K. Ohta and T. Mizuno, Energy 23 (1998) 1107.

    Google Scholar 

  67. T. Yamamoto, D.A. Tryk, A. Fujishima and H. Ohta, Electrochim. Acta 47 (2002) 3327.

    Google Scholar 

  68. S. Taguchi and A. Aramata, Electrochim. Acta 39 (1994) 2533.

    Google Scholar 

  69. Y. Tomita, S. Teruya, O. Koga and Y. Hori, J. Electrochem. Soc. 147 (2000) 4164.

    Google Scholar 

  70. K. Hara, A. Tsuneto, A. Kudo and T. Sakata, Shokubai 35 (1993) 513; Chem. Abstr. 120 (1994) 120149u.

    Google Scholar 

  71. K. Ito, Sh. Ikeda and M. Okabe, Denki Kagaku 48 (1980) 247.

    Google Scholar 

  72. K. Ito, Sh. Ikeda, T. lida and H. Niwa, Denki Kagaku 49 (1981) 106.

    Google Scholar 

  73. Y. Hori, O. Koga, A. Aramata and M. Enyo, Bull. Chem. Soc. Japan 65 (1992) 3008.

    Google Scholar 

  74. H.J. Freund and R.P. Messmer, Surf. Sci. 172 (1986) 1.

    Google Scholar 

  75. T. Mizuno, M. Kawamoto, S. Kaneco and K. Ohta, Electrochim. Acta 43 (1998) 899.

    Google Scholar 

  76. T.V. Magdesieva, T. Yamamoto, D.A. Tryk and A.J. Fujishima, J. Electrochem. Soc. 149 (2002) D89.

    Google Scholar 

  77. T. Yamamoto, D.A. Tryk, K. Hashimoto, A. Fujishima and M. Okawa, J. Electrochem. Soc. 147 (2000) 3393.

    Google Scholar 

  78. S. Chardon-Noblat, P. Da Costa, A. Deronzier, S. Maniguet and R. Ziessel, J. Electroanal. Chem. 529 (2002) 135.

    Google Scholar 

  79. F. Ko00leli, T. Atilan, N. Palamut, A.M. Gizir, R. Aydin and C.H. Hamann, J. Appl. Electrochem. 33 (2003) 447.

    Google Scholar 

  80. K. Ohta, M. Kawamoto, T. Mizuno and D.A. Lowy, J. Appl. Electrochem. 28 (1998) 717.

    Google Scholar 

  81. S. Kaneco, K. Iiba, N. Hiei, K. Ohta, T. Mizuno and T. Suzuki, Electrochim. Acta 44 (1999) 4701.

    Google Scholar 

  82. S. Kaneco, K. Iiba, K. Ohta and T. Mizuno, Energy Sources 21 (1999) 643.

    Google Scholar 

  83. J. Li and G. Prentice, J. Electrochem. Soc. 144 (1997) 4284.

    Google Scholar 

  84. R. Schrebler, P. Cury, F. Herrera, H. Gomez and R. Cordova, J. Electroanal. Chem. 516 (2001) 23.

    Google Scholar 

  85. T. Ohmori, A. Nakayama, H. Mametsuka and E. Suzuki, J. Electroanal. Chem. 514 (2001) 51.

    Google Scholar 

  86. S. Kaneco, K. Iiba, K. Ohta, T. Mizuno and A. Saji, Electrochim. Acta 44 (1998) 573.

    Google Scholar 

  87. Engineering and Physical Sciences Research Council (UK); Final Report (2002), Award number GR/L57777.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.P.S. Chaplin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplin, R., Wragg, A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. Journal of Applied Electrochemistry 33, 1107–1123 (2003). https://doi.org/10.1023/B:JACH.0000004018.57792.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000004018.57792.b8

Navigation