Skip to main content
Log in

A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion kinetics of low-carbon steel in hydrochloric acid was studied at various concentrations of mimosa tannin inhibitor. This system was subjected to impedance spectroscopy and quasi steady-state polarization. The inhibition efficiency, η was derived from the corrosion current, i corr and charge transfer resistance, R ct data. The fractional surface coverage as a function of the inhibitor concentration was calculated from the rate of hydrogen evolution reaction (h.e.r.) at constant cathodic potential. Based on the theoretical model and the observed experimental relationship between the ratio of the corrosion current densities in the uninhibited and the inhibited systems and the surface coverage, the relative influences of the geometric blocking action and the energy effect of the inhibitor on the corrosion process were estimated. Fitting of the nonlinear model to the experimental data was carried out by the Levnberg–Marquardt nonlinear fit method implemented into the programming system Mathematica ®. Restructuring of the adsorbed layer and change in the orientation of adsorbed inhibitor molecules upon the increase of surface coverage was assumed on the basis of the experimentally observed functional relationship of the double layer capacitance and the surface coverage. The results were explained with respect to the molecular properties of the inhibitor – geometry and size of the molecule, electronic orbital structure and dipole moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Metikoš-Hukovi? and R. Babi?, J. Appl. Electrochem. 26 (1996) 443.

    Google Scholar 

  2. Z. Gruba?, R. Babi? and M. Metikoš-Hukovi?, J. Appl. Electrochem. 32 (2002) 431.

    Google Scholar 

  3. M. Metikoš-Hukovi?, R. Babi? and Z. Gruba?, J. Appl. Electrochem. 32 (2002) 35.

    Google Scholar 

  4. M. Metikoš-Hukovi? and R. Babi?, J. Appl. Electrochem. 24 (1994) 325.

    Google Scholar 

  5. R. Babi?, M. Metikoš-Hukovi?, S. Omanovi?, Z. Gruba? and S. Briniæ, Br. Corros. J. 30 (1995) 288.

    Google Scholar 

  6. M. Metikoš-Hukovi?, R. Babi? and A. Marinovi?, J. Electrochem. Soc. 145 (1998) 4045.

    Google Scholar 

  7. M. Metikoš-Hukovi?, R. Babi? and I. Pai?, J. Appl. Electrochem. 30 (2000) 617.

    Google Scholar 

  8. M. Metikoš-Hukovi?, K. Furi?, R. Babi? and A. Marinovi?, Surf. Interface Anal. 27 (1999) 1016.

    Google Scholar 

  9. B.B. Damskin, O.A. Petrii and V.V. Batarakov, 'Adsorption of Organic Compounds on Electrodes' (Plenum Press, New York/London, 1971) p. 305.

    Google Scholar 

  10. I.L. Rozenfeld, 'Corrosion Inhibitors' (McGraw Hill Inc., New York, 1981) p. 109.

    Google Scholar 

  11. V.N. Ponomarenko, Yu.V. Fedorov, Z.V. Panfilova, V.A. Sazonowa and V.N. Postnov, Zach. Met. 14 (1978) 595.

    Google Scholar 

  12. T. Szauer and A. Brandt, Electrochim. Acta 26 (1981) 1209.

    Google Scholar 

  13. T. Szauer and A. Brandt, Electrochim. Acta 26 (1981) 1219.

    Google Scholar 

  14. J. Lipkowski and Z. Galus, Electroanal. Chem. Interfacial Electrochem. 61 (1975) 11.

    Google Scholar 

  15. T. Biegler and H.A. Laitinen, J. Electrochem. Soc. 113 (1966) 852.

    Google Scholar 

  16. C. Cao, Corros. Sci. 38 (1996) 2073.

    Google Scholar 

  17. J. Seawell, J. Oil Col. Chem. Assoc. 61 (1978) 439.

    Google Scholar 

  18. Lj. Vračar and D.M. Dražić, J. Electroanal. Chem. 339 (1992) 269.

    Google Scholar 

  19. Lj. Vračar and D.M. Dražić, Corros. Sci. 44 (2002) 1669.

    Google Scholar 

  20. H. Shih and F. Mansfeld, Corros. Sci. 29 (1989) 1235.

    Google Scholar 

  21. D. Altura and K. Nobe, Corrosion 29 (1973) 433.

    Google Scholar 

  22. M. Schorr and J. Yahalom, Corros. Sci. 12 (1972) 867.

    Google Scholar 

  23. J. Flis and T. Zakroczymski, J. Electrochem. Soc. 143 (1996) 2458.

    Google Scholar 

  24. O.L. Lahodny-Šarc and F. Kapor, Mater. Corros. 53 (2002) 264.

    Google Scholar 

  25. J. Iwanov and Yu.I. Kuznetsov, Zaschita Metallov 26 (1990) 48.

    Google Scholar 

  26. J. Iwanov and Yu.I. Kuznetsov, Zaschita Metallov 27 (1991) 379.

    Google Scholar 

  27. S. Martinez and I. Štern, J. Appl. Electrochem. 31 (2001) 973.

    Google Scholar 

  28. S. Martinez and I. Štern, Appl. Surf. Sci. 199 (2002) 83.

    Google Scholar 

  29. S. Martinez, Mat. Chem. Phys. 77 (2002) 97.

    Google Scholar 

  30. S. Martinez and I. Štern, Proceedings of the 15th 'International Corrosion Congress', ICC (Granada, Spain, 2002) CD-ROM.

    Google Scholar 

  31. V.J. Dražić and D.M. Dražić, Proceedings of the 7th European Symposium on 'Corrosion Inhibitors', Vol. 5, Suppl. No. 9 (Ann. Univ. Ferrara, 1990) p. 99.

    Google Scholar 

  32. J.O'M. Bockris, A.K.N. Reddy and M. Gamboa-Aldeco, 'Modern Electrochemistry 2A', 2nd edn (Kluwer Academic/Plenum Publishers, New York, 2000) p. 969.

    Google Scholar 

  33. J.O'M Bockris and B. Young, J. Electrochem. Soc. 138 (1991) 2237.

    Google Scholar 

  34. D. Risovi?, B. Gašparovi? and B. Čosovi?, Langmuir 17 (2001) 1088.

    Google Scholar 

  35. W. Plieth, Electrochim. Acta 37 (1992) 2115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Metikoš-Huković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, S., Metikoš-Huković, M. A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors. Journal of Applied Electrochemistry 33, 1137–1142 (2003). https://doi.org/10.1023/B:JACH.0000003851.82985.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000003851.82985.5e

Navigation