Skip to main content
Log in

The Formation of Defect Complexes in a ZnO Grain Boundary

  • Published:
Interface Science

Abstract

The microscopic properties a ZnO grain boundary containing extrinsic point defects are studied using a density functional computational approach. The results show that the grain boundary acts as a sink for native defects, such as the zinc vacancy and the oxygen interstitial, and also for bismuth substitutional impurities. The defects tend to accumulate at under-coordinated sites in the boundary core and prefer to form small clusters. In particular the segregation of Bi promotes the formation of the other native defects by lowering their formation energies in the boundary. Individually, the native defects and the Bi impurity do not produce deep interface states in the band gap which are electrically active. However, when the defects cluster to form a BiZn-VZn-Oi complex, new gap states are created of acceptor type. It is suggested that these new states are caused by defect interactions which compensate one another resulting in the depletion of an occupied impurity state and new bond formation. The results are discussed in terms of the Schottky barrier model commonly used to describe the electrical characteristics of ZnO varistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hozer, Semiconductor Ceramics—Grain Boundary Effects (Ellis Horwood NY, 1994).

    Google Scholar 

  2. L.M. Levinson and H.R. Philipp, in Ceramic Materials for Electronics edited by R.C. Buchanan (Marcel Dekker, NY, 1991), p. 349.

    Google Scholar 

  3. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).

    Google Scholar 

  4. M. Matsuoka, Jpn J Appl. Phys. 10, 736 (1971).

    Google Scholar 

  5. R. Einzinger, Ann. Rev. Mater. Sci 17, 299 (1987).

    Google Scholar 

  6. J.-R. Lee, Y.-M. Chiang, and G. Ceder, Acta Mater. 45, 1247 (1997).

    Google Scholar 

  7. K.-I. Kobayashi, O. Wada, M. Kobayashi, and Y. Takada, J Am. Ceram. Soc. 81, 2071 (1998).

    Google Scholar 

  8. Y.-M. Chiang, H. Wang, and J.-R. Lee, J Microscopy 191, 275 (1998).

    Google Scholar 

  9. I. Majid, Y. Liu, R.W. Balluffi, and J.B. Vander Sande, Mat. Res. Soc. Proc. 401, 55 (1996).

    Google Scholar 

  10. H. Kanai, M. Imai, and T. Takahashi, J. Mat. Sci. 20, 3957 (1985).

    Google Scholar 

  11. G.E. Pike, in Materials Science and Technology, edited by M.V. Swain (VCH Weinheim, Germany, 1994), Vol. 11, p.731.

    Google Scholar 

  12. E. Sonder, M.M Austin, and D.L. Kinser, J Appl. Phys. 54, 3566 (1983).

    Google Scholar 

  13. Y. Sato, F. Oba, T. Yamamoto, Y. Ikuhara, and T. Sakauma, J. Am. Ceram. Soc. 85, 2142 (2002).

    Google Scholar 

  14. F. Oba, S.R Nishitanai, H. Adachi, and I. Tanaka, Phys. Rev B63, 045410 (2001).

    Google Scholar 

  15. J.M. Carlsson, B. Hellsing, H.S. Domingos, and P.D. Bristowe, J. Phys.: Condens. Matt. 13, 9937 (2001).

    Google Scholar 

  16. F. Oba, H. Adachi, and I. Tanaka, J. Mater. Res. 15, 2167 (2000).

    Google Scholar 

  17. H.S. Domingos, J.M. Carlsson, P.D. Bristowe, and B. Hellsing, J. Phys.: Condens. Matt. 14, 12717 (2002).

    Google Scholar 

  18. J.M. Carlsson, H.S. Domingos, B. Hellsing, and P.D. Bristowe, Interface Sci. 9, 143 (2001).

    Google Scholar 

  19. A. Kiselev, F. Sarrazit, E. Stepantsov, E. Olsson, T. Claeson, V. Bondarenko, R. Pond, N. Kiselev, Phil. Mag A76 633 (1997).

    Google Scholar 

  20. F. Sarrazit, R. Pond, and N. Kiselev, Phil. Mag. Lett 77, 191 (1998).

    Google Scholar 

  21. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Google Scholar 

  22. J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, and C. Fiolhais, Phys. Rev. B46, A6671 (1992).

    Google Scholar 

  23. D. Vanderbilt, Phys. Rev B41, 7892 (1990).

    Google Scholar 

  24. Cerius 2 User Guide (MSI/Accelrys, 1999).

  25. B. Hammer et al. Dacapo-1.30, Center for Atomic Scale and Materials Physics (Danmarks Tekniske Universitet, Lyngby, Denmark, 1998).

    Google Scholar 

  26. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970).

    Google Scholar 

  27. J.M. Carlsson, B. Hellsing, H.S. Domingos, and P.D. Bristowe, Surf. Sci. 532–535, 351 (2003).

    Google Scholar 

  28. A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, Phys, Rev. B61, 15019 (2000)

    Google Scholar 

  29. F. Oba, S.R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, J Appl. Phys. 90, 824 (2001).

    Google Scholar 

  30. S.B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B63, 075205 (2001).

    Google Scholar 

  31. F. Greuter, G. Blatter, M. Rossinelli, and F. Stucki, Ceram. Trans. 3, 31 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domingos, H., Carlsson, J., Bristowe, P. et al. The Formation of Defect Complexes in a ZnO Grain Boundary. Interface Science 12, 227–234 (2004). https://doi.org/10.1023/B:INTS.0000028652.75962.10

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000028652.75962.10

Navigation