Skip to main content
Log in

Twin Boundaries in Zinc Oxide with Additions of Gallium Oxide

  • Published:
Interface Science

Abstract

Twin boundaries (TBs) in ZnO sintered with small additions of Ga2O3 have been characterized with advanced methods of transmission electron microscopy (TEM). The TBs and accompanying inversion domain boundaries are on {011¯3} planes of ZnO. The Ga content of the TB corresponds to an effectively half occupied {011¯3} plane determined from compositional maps calculated from electron spectroscopic images using electron filtering TEM. The structure of the TBs were investigated by high-resolution TEM, and images of focus series were used to reconstruct the complex electron wave. Simulated electron waves based on structure models of the TB were quantitatively compared with the reconstructed wave to identify and to refine atom positions. The twins can be considered to be created by a mirror operation on a {011¯3} plane of ZnO, and two alternating closed-packed polyhedral clusters of oxygen ions can be identified as building units of the TB structure. Unit 1 is occupied with Zn2+ by simply continuing ZnO4 tetrahedra of the same type from both crystals to the TB. Using arguments of local charge balance unit 2 can only be occupied with the trivalent Ga3+ ion. The Ga3+ position was refined with high precision (±5 pm), and the resulting polyhedron is a GaO5 square pyramid. The pyramids form densely occupied columns parallel to the twin axis [21¯1¯0]. The analysis of the TB structure yields a fractional occupancy of the boundary plane by Ga of 0.5, which is in good agreement with the result of the chemical composition measurement with energy filtered TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.C.M. Van de Pol, Ceram. Bull. 69, 1959 (1990).

    Google Scholar 

  2. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).

    Google Scholar 

  3. C. Wagner, J. Chem. Phys. 18, 62 (1950).

    Google Scholar 

  4. R. Wang, A.W. Sleight, and D. Cleary, Chem. Mater. 8, 433 (1996).

    Google Scholar 

  5. K.Y. Cheong, N. Muti, and S.R. Ramanan, Thin Solid Films 410, 142 (2002).

    Google Scholar 

  6. D. Makovec and M. Trontelj, J. Am. Ceram. Soc. 77, 1202 (1994).

    Google Scholar 

  7. N. Daneu, A. Rečnik, S. Bernik, and D. Kolar, J. Am. Ceram. Soc. 83, 3165 (2000).

    Google Scholar 

  8. A. Rečnik, N. Daneu, T. Walther, and W. Mader, J. Am. Ceram. Soc. 84, 2657 (2001).

    Google Scholar 

  9. M. Nakamura, N. Kimizuka, and T. Mohri, J. Solid State Chem. 86, 16 (1990).

    Google Scholar 

  10. C. Li, Y. Bando, M. Nakamura, M. Onoda, and N. Kimizuka, J. Solid State Chem. 139, 347 (1998).

    Google Scholar 

  11. C. Li, Y. Bando, M. Nakamura, K. Kurashima, and N. Kimizuka, Acta Cryst. B55, 355 (1999).

    Google Scholar 

  12. J. Barf and W. Mader, J. Solid State Chem., (submitted).

  13. T. Walther, J. Barf, and W. Mader, in Proceedings of the 12th European Congress on Electron Microscopy, EUREM 12, edited by L. Frank and F. Čiampor (the Czechoslovak Society for Electron Microscopy, Brno, Czech Republic, 2000), Vol. 2, p. 409.

    Google Scholar 

  14. J. Barf, T. Walther, A. Steinecker, and W. Mader, Microscopy and Microanalysis 7, 239; Supplement 2, in Proceedings of Microscopy and Microanalysis 2001, edited by C.E. Lyman (Microscopy Society of America, Bethlehem, PA, USA;Springer, New York, 2001).

    Google Scholar 

  15. A. Steinecker and W. Mader, Ultramicrosopy 81, 149 (2000).

    Google Scholar 

  16. M. Op de Beeck, D. van Dyck, and W.M.J. Coene, Ultramicrosopy 64, 167 (1996).

    Google Scholar 

  17. M. Albrecht, V. Grillo, J. Borysiuk, T. Remmele, H.P. Strunk, T. Walther, W. Mader, P. Prystawko, M. Leszczynski, I. Grzegory, and S. Porowski, in Inst.Phys.Conf.Ser.169, edited by A.G. Cullis and J.L. Hutchison (Institute of Physics Publishing, Bristol, 2001), p. 267.

    Google Scholar 

  18. T. Walther, C.J. Humphreys, A.G. Cullis, and D.J. Robbins, Mater. Sci. Forum 196, 505 (1995).

    Google Scholar 

  19. G. Kalonji, J. Physique 46, coll. 4, 249 (1985).

    Google Scholar 

  20. R. Kilaas, CrytsalKit (Berkeley, California, 1995), Version 1.8.2.

    Google Scholar 

  21. R.C. Pond, D.A. Smith, and V. Vitek, Scripta Metall. 12, 699 (1978).

    Google Scholar 

  22. M.F. Ashby, F. Spaepen, and S. Williams, Acta Metall. 26, 1647 (1978).

    Google Scholar 

  23. V. Vitek, A.P. Sutton, D.A. Smith, and R.C. Pond, in Grain Boundary Structure and Kinetics, edited by R.W. Balluffi (American Society for Metals, Metals Park, Ohio, 1980), p. 115.

    Google Scholar 

  24. C.L. Jia and A. Thust, Phys. Rev. Lett. 82, 5152 (1999).

    Google Scholar 

  25. G. Möbus and M. Rühle, Ultramicrosopy 56, 54 (1994).

    Google Scholar 

  26. S. Geller, J. Chem. Phys. 33, 676 (1960).

    Google Scholar 

  27. M. Marezio, Acta Cryst. 18, 481 (1965).

    Google Scholar 

  28. M. Marezio and J.P. Remeika, J. Chem. Phys. 46, 1862 (1967).

    Google Scholar 

  29. J. Hornstra and E. Keulen, Philips Research Reports 27, 76 (1972).

    Google Scholar 

  30. W. Marti, P. Fischer, F. Altorfer, H.J. Schell, and M. Tadin, J. Phys.: Condens. Matter 6, 127 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barf, J., Walther, T. & Mader, W. Twin Boundaries in Zinc Oxide with Additions of Gallium Oxide. Interface Science 12, 213–226 (2004). https://doi.org/10.1023/B:INTS.0000028651.74657.2b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000028651.74657.2b

Navigation