Skip to main content
Log in

Manipulating Bonding at a Cu/(0001)Al2O3 Interface by Different Substrate Cleaning Processes

  • Published:
Interface Science

Abstract

Growth of Cu films on (0001)Al2O3 substrates can result in metallic Cu—Al or ionic-covalent Cu—O bonds at atomically abrupt interfaces. The type of bonding depends on the substrate cleaning procedure prior to film growth. Cu films deposited on Ar+-ion sputter-cleaned substrates exhibit interfacial Cu-L2,3, Al-L2,3 and O-K energy-loss near-edge structures that indicate the formation of metallic Cu—Al bonds at the Cu/Al2O3 interface. In contrast, growth on chemically cleaned α-Al2O3 substrates results in interfacial energy-loss near-edge structures that suggest Cu—O bonding at the interface. The experimental electron energy-loss spectroscopic results are compared to calculated spectra, and the mechanisms causing the changes in the atomic and electronic structure are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Guo and P.J. MØller, Surface Science 244, 228 (1991).

    Google Scholar 

  2. Q. Guo and P.J. MØller, Thin Solid Films 201, 267 (1991).

    Google Scholar 

  3. M. Gautier, J.P. Durand, and L.P. Van, Surf. Sci. Letts.249, L327 (1991).

    Google Scholar 

  4. M. Gautier, L.P. Van, and J.P. Durand, Europhys. Letts. 18, 75 (1992).

    Google Scholar 

  5. S. Gota, M. Gautier, L. Douillard, J.P. Durand, and P.L. Fevre, Surface Science 352, 1016 (1996).

    Google Scholar 

  6. G. Dehm, C. Scheu, G. Möbus, R. Brydson, and M. Rühle, Ultramicroscopy 67, 207 (1997).

    Google Scholar 

  7. C. Scheu, G. Dehm, M. Rühle, and R. Brydson, Phil. Mag. A 78(2), 439 (1998).

    Google Scholar 

  8. G.L. Zhao, J.R. Smith, J. Raynolds, and D.J. Srolovitz, Interface Science 3, 289 (1996).

    Google Scholar 

  9. W. Stein, PhD Thesis, University of Stuttgart, Germany (2001).

  10. G. Dehm, M. Rühle, G. Ding, and R. Raj, Phil. Mag. B 71, 1111 (1995).

    Google Scholar 

  11. A. Strecker, U. Salzberger, and J. Mayer, Prakt. Metallogr. 30, 482 (1993).

    Google Scholar 

  12. F. Phillipp, R. Höschen, M. Osaki, G. Möbus, and M. Rühle, Ultramicroscopy 56, 1 (1994).

    Google Scholar 

  13. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, New York, 1996).

    Google Scholar 

  14. J. Bruley, Microsc. Microanal. Microstruct. 4, 23 (1993).

    Google Scholar 

  15. H. Müllejans and J. Bruley, J. of Microscopy 180, 12 (1995).

    Google Scholar 

  16. C. Scheu, G. Dehm, H. Müllejans, R. Brydson, and M. Rühle, Microsc. Microanal. Microstruct. 6, 19 (1995).

    Google Scholar 

  17. H. Gu, M. Ceh, S. Stemmer, H. Müllejans, and M. Rühle, Ultramicroscopy 59, 215 (1995).

    Google Scholar 

  18. C. Scheu, W. Stein, and M. Rühle, Phys. Stat. Sol. (b) 222, 199 (2000).

    Google Scholar 

  19. C. Scheu, Journal of Microscopy 205, 52 (2002).

    Google Scholar 

  20. D.D. Vvedensky, D.K. Saldin, and J.B. Pendry, Computer Phys. Commun. 40, 421 (1986).

    Google Scholar 

  21. M. Gao, unpublished results.

  22. J. Bruley, R. Brydson, H. Müllejans, J. Mayer, G. Gutekunst, W. Mader, D. Knauss, and M. Rühle, J. Materials Res. 9(10), 2574 (1994).

    Google Scholar 

  23. R. Brydson, H. Müllejans, J. Bruley, P. Trusty, X. Sun, J. Yeomans, and M. Rühle, J. Microscopy 177, 369 (1995).

    Google Scholar 

  24. J. Bruley, Microsc. Microanal. Microstruct. 4, 23 (1993).

    Google Scholar 

  25. P.L. Hansen, R. Brydson, D.W. McComb, and I.G. Richardson, Microsc. Microanal. Microstruct. 5, 173 (1995).

    Google Scholar 

  26. R. Brydson, J. Phys. D: Appl. Phys. 29 (7), 1699 (1996).

    Google Scholar 

  27. J. Ahn and J.W. Rabalais, Surface Science 388, 121 (1997).

    Google Scholar 

  28. K.C. Hass, W.F. Schneider, A.C. Curioni, and W. Andreoni, Science 282, 265 (1998).

    PubMed  Google Scholar 

  29. P.J. Eng, T.P. Trainor, G.E. Brown, G.A. Waychunas, M. Newville, S.R. Sutton, and M.L. Rivers, Science 288, 1029 (2000).

    PubMed  Google Scholar 

  30. J. A. Kleber, C. Niu, K. Shepherd, D. R. Jennison, and A. Bogicevic, Surface Science 446, 76 (2000).

    Google Scholar 

  31. K.H. Johnson and S.V. Pepper, J. Appl. Phys 53, 6634 (1982).

    Google Scholar 

  32. A.B. Anderson, C. Ravimohan, and S.P. Mehandru, Surface Science 183, 438 (1987).

    Google Scholar 

  33. K. Nath and A.B. Anderson, Phys. Rev. B 39, 1013 (1989).

    Google Scholar 

  34. P. Alemany, R.S. Boorse, J.M. Burlitch, and R. Hoffman, J. Phys. Chem 97, 8464 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheu, C. Manipulating Bonding at a Cu/(0001)Al2O3 Interface by Different Substrate Cleaning Processes. Interface Science 12, 127–134 (2004). https://doi.org/10.1023/B:INTS.0000012304.56861.68

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000012304.56861.68

Navigation