Skip to main content
Log in

Synthesis and Study of Ion Adsorption and Fluorescent Properties of Silica-Grafted Bis(crownazo)methine

  • Published:
Inorganic Materials Aims and scope

Abstract

A ketocyanine ligand containing two N-aza-15-crown-5 residues has been synthesized and covalently anchored to a silica substrate through an azomethine link. The ligand formation and molecular structure have been determined by combining spectral data and molecular simulations. Preferential adsorption of rare-earth metals from aqueous solutions to the modified surface has been noticed. In the case of lanthanum, the adsorption is accompanied by significant fluorescence enhancement, which allows this system to be used as a sensor for La3+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Valeur, B., Bourson, J., and Pouget, J., Ion-Responsive Fluorescent Compounds: 4. Effect of Cation Binding on the Photophysical Properties of a Coumarin Linked To Monoaza-Crown and Diaza-Crown Ethers, J. Phys. Chem., 1993, vol. 97, no. 17, pp. 4552–4557.

    Google Scholar 

  2. Valeur, B. and Leray, I., Design Principles of Fluorescent Molecular Sensors for Cation Recognition, Coord. Chem. Rev., 2000, vol. 205, pp. 3–40.

    Google Scholar 

  3. Prodi, L., Bolletta, F., Montalti, M., and Zaccheroni, N., Luminescent Chemosensors for Transition Metal Ions, Coord. Chem. Rev., 2000, vol. 205, pp. 59–83.

    Google Scholar 

  4. Keefe, M.H., Benkstein, K.D., and Hupp, J.T., Luminescent Sensor Molecules Based on Coordinated Metals: A Review of Recent Developments, Coord. Chem. Rev., 2000, vol. 205, pp. 201–228.

    Google Scholar 

  5. De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., et al., Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev., 1997, vol. 97, no. 5, pp. 1515–1566.

    Google Scholar 

  6. Akkaya, E.U., Huston, M.E., and Czarnik, A.W., Chelation-Enhanced Fluorescence of Anthrylazamacrocycle Conjugate Probes in Aqueous Solution, J. Am. Chem. Soc., 1990, vol. 112, no. 9, pp. 3590–3593.

    Google Scholar 

  7. Huston, M.E., Engleman, C., and Czarnik, A.W., Chelatosensitive Fluorescence Perturbation in Anthry-lazamacrocycle Conjugate Probes—Electrophilic Aromatic Cadmiation, J. Am. Chem. Soc., 1990, vol. 112, no. 19, pp. 7054–7056.

    Google Scholar 

  8. Martin, M.M., Plaza, P., Meyer, Y.H., et al., Steady-State and Picosecond Spectroscopy of Li+ or Ca 2+ Complexes with a Crowned Merocyanine: Reversible Photorelease of Cations, J. Phys. Chem., 1996, vol. 100, no. 17, pp. 6879–6888.

    Google Scholar 

  9. Valeur, B., Badaoui, F., Bardez, E., et al., Fluorescent Chemosensors of Ion and Molecule Recognition, NATO ASI Ser., 1996.

  10. Doroshenko, A.O., Grigorovich, A.V., Posokhov, E.A., et al., Bis-Azacrown Derivative of Di-Benzilidene-Cyclopentanone as Alkali Earth Ion Chelating Probe: Spectroscopic Properties, Proton Accepting Ability, and Complex Formation with Mg 2+ and Ba 2+ Ions, Mol. Eng., 1999, vol. 8, no. 3, pp. 199–215.

    Google Scholar 

  11. Pivovarenko, V.G., Klueva, A.V., Doroshenko, A.O., and Demchenko, A.P., Bands Separation in Fluorescence Spectra of Ketocyanine Dyes: Evidence for Their Complex Formation with Monohydric Alcohols, Chem. Phys. Lett., 2000, vol. 325, no. 4, pp. 389–398.

    Google Scholar 

  12. Shields, G.D. and Bousher, L.J., J. Inorg. Nucl. Chem., 1978, vol. 40, p. 1341.

    Google Scholar 

  13. Purrello, R., Gurrieri, S., and Lauceri, R., Porphyrin Assemblies as Chemical Sensors, Coord. Chem. Rev., 1999, vols. 190–192, pp. 683–706.

    Google Scholar 

  14. Brunel, D., Bellocq, N., Sutra, P., et al., Transition-Metal Ligands Bound onto the Micelle-Templated Silica Surface, Coord. Chem. Rev., 1998, vols. 178–180, pp. 108-1108.

    Google Scholar 

  15. Islam, M., Khanin, M., and Sadik, O.A., Fluorescent Chelates for Monitoring Metal Binding with Macromolecules, Biomacromolecules, 2003, vol. 4, no. 1, pp. 11-121.

    Google Scholar 

  16. Zheng, Y., Orbulescu, J., Andreopoulos, F.M., et al., Development of Fluorescent Film Sensors for the Detection of Divalent Copper, J. Am. Chem. Soc., 2003, vol. 125, no. 9, pp. 2680–2686.

    Google Scholar 

  17. Golub, A.A., Extended Abstracts, Int. Conf. on Silica, Silica 98, Mulhouse (France), 1998, p. 585.

  18. Dix, J.P. and Vogtle, F., Ligand Structure and Complexation: 50. Ion-Selective Crown Ether Dyes, Chem. Ber., 1980, vol. 113, no. 2, pp. 457–470.

    Google Scholar 

  19. Socrates, G., Infrared Characteristic Group Frequencies, Chichester: Wiley, 1980.

    Google Scholar 

  20. The Aldrich Library of FT-IR Spectra, Pouchert C.J., Ed., Aldrich: Milwaukee, 1985.

    Google Scholar 

  21. Adamo, C. and Barone, V., Toward Reliable Adiabatic Connection Models Free from Adjustable Parameters, Chem. Phys. Lett., 1997, vol. 274, nos. 1–3, pp. 24-250.

    Google Scholar 

  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 98 (Revision A.7), Pittsburgh: Gaussian, 1998.

    Google Scholar 

  23. Sverdlova, O.V., Elektronnye spektry v organicheskoi khimii (Electronic Spectra in Organic Chemistry), Leningrad: Khimiya, 1985.

    Google Scholar 

  24. De Andrade, A.V.M., da Costa, N.V., Longo, R.L., et al., Modeling Lanthanide Complexes: Towards the Theoretical Design of Light Conversion Molecular Devices, Mol. Eng., 1997, vol. 7, no. 3/4, pp. 293–308.

    Google Scholar 

  25. De Andrade, A.V.M., Longo, R.L., Simas, A.M., and de Sa, G.F., Theoretical Model for the Prediction of Electronic Spectra of Lanthanide Complexes, J. Chem. Soc., Faraday Trans., 1996, vol. 92, no. 11, pp. 183-1839.

    Google Scholar 

  26. Stevens, W.J., Basch, H., and Krauss, M., Compact Effective Potentials and Efficient Shared-Exponent Basis-Sets for the 1st-Row and 2nd-Row Atoms, J. Chem. Phys., 1984, vol. 81, no. 12, pp. 6026–6033.

    Google Scholar 

  27. Rogers, R.D. and Rollins, A.N., Mixed Anion Lan-thanide( III) Crown-Ether Complexes, Inorg. Chim. Acta, 1995, vol. 230, no. 1/2, pp. 177–183.

    Google Scholar 

  28. Rogers, R.D. and Kurihara, L.K., f-Element Crown-Ether Complexes, Inorg. Chim. Acta, 1987, vol. 130, no. 1, pp. 131–137.

    Google Scholar 

  29. Rogers, R.D. and Kurihara, L.K., f-Element Crown-Ether Complexes, Inorg. Chim. Acta, 1986, vol. 116, no. 2, pp. 171–177.

    Google Scholar 

  30. Xia, W.-S., Schmehl, R.H., and Li, C.-J., A Fluorescent 18-Crown-6 Based Luminescence Sensor for Lan-thanide Ions, Tetrahedron, 2000, vol. 56, no. 36, pp. 7045–7049.

    Google Scholar 

  31. Jiang, J., Higashiyama, N., Machida, K.-I., and Adachi, G.-Y., The Luminescent Properties of Divalent Europium Complexes of Crown Ethers and Cryptands, Coord. Chem. Rev., 1998, vol. 170, pp. 1–29.

    Google Scholar 

  32. Rogers, C.W. and Wolf, M.O., Luminescent Molecular Sensors Based on Analyte Coordination to Transition-Metal Complexes, Coord. Chem. Rev., 2002, vol. 233, pp. 341–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhmud, B.V., Golub, A.A. & Pivovarenko, V.G. Synthesis and Study of Ion Adsorption and Fluorescent Properties of Silica-Grafted Bis(crownazo)methine. Inorganic Materials 40, 1006–1013 (2004). https://doi.org/10.1023/B:INMA.0000041337.25781.3a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000041337.25781.3a

Keywords

Navigation