Skip to main content
Log in

SnF2-Based Solid Electrolytes

  • Published:
Inorganic Materials Aims and scope

Abstract

The effects of atomic structure, preparation conditions, and thermal history on the mechanisms of anion conduction in SnF2-based solid electrolytes are analyzed, and the potential electrochemical applications of such materials are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Murin, I.V., Superionic Conductors: Anomalously High Ionic Conductivity in Inorganic Fluorides, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1984, no. 1, pp. 5--61.

    Google Scholar 

  2. Reau, J.M. and Grannec, J., Fast Fluoride Ion Conduc-tors, Inorganic Solid Fluorides; Chemistry and Physics, Hagenmuller, P., Ed., New York: Academic, 1985, pp. 423–467.

    Google Scholar 

  3. Takahashi, T., High Conductivity Solid Electrolytes in the Crystalline State at Room Temperature, Mater. Sci. Eng., B, 1992, vol. 13, pp. 199–202.

    Google Scholar 

  4. Denes, G., Pannetier, J., Lucas, J., and Le Marouille, J.Y., About SnF 2 Stannous Fluoride: 1. Crystallochemistry of α-SnF 2, J. Solid State Chem., 1979, vol. 30, no. 3, pp. 335–343.

    Google Scholar 

  5. Denes, G., Pannetier, J., and Lucas, J., About SnF2 Stan-nous Fluoride: 2. Crystal Structure of β-and δ-SnF 2, J. Solid State Chem., 1980, vol. 33, no. 1, pp. 1–11.

    Google Scholar 

  6. Denes, G., About SnF2 Stannous Fluoride: 4. Phase Transitions, Mater. Res. Bull., 1980, vol. 15, no. 6, pp. 807–819.

    Google Scholar 

  7. Reau, J.M., Rhandour, A., Lucat, C., et al., Les pro-priétés d'halogénures d'étain divalent, Mater. Res. Bull., 1978, vol. 13, pp. 435–438.

    Google Scholar 

  8. Evarestov, R.A., Petrov, A.V., and Murin, I.V., Electronic Structure of Fluoride-Ion-Conducting Superionic Crys-tals, Fiz. Tverd. Tela (Leningrad), 1988, vol. 30, no. 3, pp. 891–893.

    Google Scholar 

  9. Murin, I.V., Chernov, S.V., Vlasov, M.Yu., et al., Electro-lytic Properties of Tin Difluoride, Zh. Prikl. Khim. (Len-ingrad), 1985, no. 11, pp. 2439–2442.

    Google Scholar 

  10. Claudy, P., Letoffe, J.M., Vilminot, S., et al., Corrélation entre structure, conductivité ionique et propriétés ther-modynamiques dans la série des halogénofluorures, J. Fluorine Chem., 1981, vol. 18, pp. 203–212.

    Google Scholar 

  11. Murin, I.V., Chernov, S.V., and Vlasov, M.Yu., Prepara-tion of High-Purity Tin Difluoride, Zh. Prikl. Khim. (Leningrad), 1985, no. 10, pp. 2340–2342.

    Google Scholar 

  12. Goryacheva, T.V. and Rakov, E.G., In Search of Fluoride Superionics: Synthesis and Properties of Tin Difluoride, 10 Simpozium po khimii neorganicheskikh ftoridov (10th Symp. on the Chemistry of Inorganic Fluorides), Mos-cow, 1998, p. 46.

  13. Vlasov, M.Yu., SnF2-Based Solid Electrolytes: Electri-cal Properties, Structure, and Polymorphism, Cand. Sci. (Chem.) Dissertation, Leningrad: Leningrad State Univ., 1986.

    Google Scholar 

  14. Hariharan, K. and Maier, J., Influence of Oxidic Second Phases on Fluoride Conductors PbF2 and SnF2, 10th Int. Conf on Solid State Ionics, Singapore, 1995, p. 96.

  15. Sorokin, N.I., Rakov, E.G., Fedorov, P.P., and Zaka-lyukin, R.M., Synthesis and Electrical Properties of Ammonium Fluorostannates(II), Zh. Prikl. Khim. (S.-Peterburg), 2003, vol. 76, no. 3, p. 512–514.

    Google Scholar 

  16. Vilminot, S., Perez, G., Granier, W., and Cot, L., Sur le composé TlSn2 F5 conducteur ionique par F-, Rev. Chim. Miner., 1980, vol. 17, no. 4, pp. 397–403.

    Google Scholar 

  17. Basler, W.D., Murin, I.V., and Chernov, S.V., Electrical Conductivity and Fluoride Self-diffusion in RbSn2 F5, Z. Naturforsch., A: Phys. Sci., 1981, vol. 36, no. 5, pp. 519–520.

    Google Scholar 

  18. Murin, I.V. and Chernov, S.V., SnF2-Based High-Ionic-Conductivity Solid Electrolytes, Vestn. Leningr. Univ., 1982, vol. 10, no. 2, pp. 105–107.

    Google Scholar 

  19. Vopilov, V.A., Buznik, V.M., Chernov, S.V., and Murin, I.V., Fluorine Diffusion in ASn2 F5 Solid Electro-lytes, Zh. Neorg. Khim., 1982, vol. 55, no. 9, pp. 195--1960.

    Google Scholar 

  20. Basler, W.D., Murin, I.V., and Chernov, S.V., Fluorine Diffusion and Phase Transition in Superionic Conductor KSn2 F5 as Studied by 19F NMR, Electrical Conductivity, and DSC, Z. Naturforsch., A: Phys. Sci., 1983, vol. 38, no. 5, pp. 593–594.

    Google Scholar 

  21. Vilminot, S., Bachmann, R., and Schulz, H., Structure and Conductivity in KSn2 F5, Solid State Ionics, 1983, vol. 9-10, pp. 559–562.

    Google Scholar 

  22. Battut, J.P., Dupuis, J., Soudani, S., et al., NMR and Electrical Conduction Study of Fluorine Motion in MSn2 F5 Compounds with M = Na, K, Rb, Cs, Tl, NH4, Solid State Ionics, 1987, vol. 22, no. 2/3, pp. 247–252.

    Google Scholar 

  23. Peceliunaite, A., Chernov, S.V., Murin, I.V., et al., Elec-trical Properties of KSn2 F5 Crystals in the Range 102 to 1010 Hz, Liet. Fiz. Rinkinys, 1990, vol. 30, no. 1, pp. 3--42.

    Google Scholar 

  24. Hirokawa, K., Kitahara, H., Furukawa, Y., and Naka-mura, D., Fluoride Ion Diffusion in MSn2 F5 (M + = NH +4 , Rb+, Cs+ ) Studied by 1H and 19F Nuclear Magnetic Relaxation and Electrical Conductivity, Ber. Bunsen-Ges. Phys. Chem., 1991, vol. 95, no. 6, pp. 651–658.

    Google Scholar 

  25. Murin, I., Peceliunaite, A., Kezionis, A., et al., Electrical Properties of NH 4 Sn 2 F 5 Polycrystals in the Frequency Range from 20 to 3.2 X 1010 Hz, Solid State Ionics, 1996, vols. 86–88, pp. 247–250.

    Google Scholar 

  26. Ahmad, M.M., Yamada, K., and Okuda, T., Ionic Con-ductivity and Relaxation in KSn 2 F 5 —Fluoride Ion Con-ductor, Physica B (Amsterdam), 2003, vol. 339, no. 2/3, pp. 94–100.

    Google Scholar 

  27. Murin, I.V., Chernov, S.V., and Vlasov, M.Yu., Electrical Properties of Barium Fluorostannates(II), Vestn. Len-ingr. Univ., 1985, no. 25, pp. 95–98.

    Google Scholar 

  28. Denes, G., Birchall, T., Sayer, M., and Bell, M.F., BaSnF 4 —A New Fluoride Ionic Conductor with the α-PbSnF 4 Structure, Solid State Ionics, 1984, vol. 13, pp. 213–219.

    Google Scholar 

  29. Chadwick, A.V., Hammam, E.S., Van der Putten, D., and Strange, J.H., Studies of Ionic Transport in MF 2–SnF 2 Systems, Cryst. Lattice Defects Amorph. Mater., 1987, vol. 15, pp. 303–308.

    Google Scholar 

  30. Vilminot, S., Perez, G., Granier, W., and Cot, L., High Ionic Conductivity in New Fluorine Compounds of Tin II: 1. On PbSnF 4: Relation between Structure and Con-ductivity, Solid State Ionics, 1981, vol. 2, pp. 87–90.

    Google Scholar 

  31. Murin, I.V., Ivanov-Shits, A.K., Tsvetnova, L.A., et al., Electrical Conductivity of Bulk and Thin-Film PbSnF 4, Vestn. Leningr. Univ., 1982, vol. 19, no. 2, pp. 118–120.

    Google Scholar 

  32. Sorokin, N.I., Fedorov, P.P., Nikol'skaya, O.K., et al., Electrical Properties of PbSnF 4 Materials Prepared by Different Methods, Neorg. Mater., 2001, vol. 37, no. 11, pp. 1378–1382 [Inorg. Mater. (Engl. Transl.), vol. 37, no. 11, pp. 1178–1182].

    Google Scholar 

  33. Reau, J.M., Lucat, C., Portier, J., Hagenmuller, P., et al., Etude des propriétés structurales et électriques d'un nou-veau conducteur anionique: PbSnF 4, Mater. Res. Bull., 1978, vol. 13, pp. 877–882.

    Google Scholar 

  34. Vakulenko, A.M. and Ukshe, E.A., Electrical Conductiv-ity of PbSnF 4 Solid Electrolyte, Elektrokhimiya, 1992, vol. 28, no. 9, pp. 1257–1267.

    Google Scholar 

  35. Kanno, R., Nakamura, S., and Kawamoto, Y., Ionic Con-ductivity of Tetragonal PbSnF 4 Prepared by Solid Reac-tion in HF Atmosphere, Mater. Res. Bull., 1991, vol. 26, pp. 1111–1117.

    Google Scholar 

  36. Sorokin, N.I., Sobolev, B.P., and Braiter, V., Anion Transport in MF 2-Based (M = Pb, Cd) Superionic Con-ductors, Fiz. Tverd. Tela (S.-Peterburg), 2002, vol. 44, no. 8, pp. 1506–1512.

    Google Scholar 

  37. Lucat, C., Rhandour, A., Cot, L., and Reau, J.M., Conductivité de l'ion fluor dans la solution solide Pb 1–x Sn x F 2, Solid State Commun., 1979, vol. 32, pp. 167–169.

    Google Scholar 

  38. Ito, Y., Mukoyama, T., Ashio, K., et al., Ionic Conductiv-ity and Crystal Structure of β-Pb 1-x Sn x F 2 (x < 0.3), Solid State Ionics, 1998, vol. 106, no. 3/4, pp. 291–299.

    Google Scholar 

  39. Kawamoto, Y., Nohara, I., Fujiwara, J., and Umetani, Y., Exploration of Fluoride Glasses with Faster Fluoride-Ion Conduction, Solid State Ionics, 1987, vol. 24, pp. 32--331.

    Google Scholar 

  40. Donaldson, J.D. and Senior, B.J., Fluorostannates(II): the Nontransition-Metal(II) Derivatives of the Complex Tin(II) Fluoride Ions, J. Chem. Soc. A, 1967, pp. 182--1825.

  41. Denes, G., Pannetier, J., and Lucas, J., Les fluorures MSnF 4 à structure PbFCl (M = Pb, Sr, Ba), C. R. Acad. Sci., Ser. C, 1975, vol. 280, pp. 831–834.

    Google Scholar 

  42. Conturier, G., Danto, Y., Pistre, J., et al., The Anionic Conductor PbSnF 4: A Study of Thin Films and Ceram-ics, in Fast Ion Transport in Solids, New York: Elsevier, 1979, pp. 687–690.

    Google Scholar 

  43. Pannetier, J., Denes, G., and Lucas, J., MSnF 4 (M = Pb 2+, Ba 2+, Sr 2+): Thermal Expansion and Phase Transitions, Mater. Res. Bull., 1979, vol. 14, pp. 627–631.

    Google Scholar 

  44. Ito, Y., Mukoyama, T., Funatomi, H., et al., The Crystal Structure of Tetragonal Form PbSnF 4, Solid State Ionics, 1994, vol. 67, pp. 301–320.

    Google Scholar 

  45. Chernov, S.V., Moskvin, A.L., and Murin, I.V., Structure of Lead(II) Tetrafluorostannate(II) Prepared by Hydro-thermal Synthesis, Solid State Ionics, 1991, vol. 47, pp. 71–73.

    Google Scholar 

  46. Nikol'skaya, O.K., Dem'yanets, L.N., Kuznetsova, N.P., and Antsyshkina, A.S., Hydrothermal Synthesis of α'-PbSnF 4 Single Crystals, Neorg. Mater., 1996, vol. 32, no. 11, pp. 1392–1396 [Inorg. Mater. (Engl. Transl.), vol. 32, no. 11, pp. 1221–1225].

    Google Scholar 

  47. Perez, G., Vilminot, S., Granier, W., et al., About the Allotropic Transformations of PbSnF 4, Mater. Res. Bull., 1980, vol. 15, pp. 587–593.

    Google Scholar 

  48. Claudy, P., Letoffe, J.M., Perez, G., et al., Etude du com-portement thermique de PbSnF 4 par analyse calo-rimétrique différentielle, J. Fluorine Chem., 1981, vol. 17, pp. 145–153.

    Google Scholar 

  49. Denes, G., Yu, Y.H., Tyliszczak, T., and Hitchcock, P., Sn-K, Pb-L 3, and Ba-L3 EXAFS, X-ray Diffraction, and 119 Sn Mossbauer Spectroscopic Studies of Ordered MSnF 4 (M = Pb and Ba) Fluoride Ionic Conductors with the α-PbSnF 4 Structure, J. Solid State Chem., 1991, vol. 91, pp. 1–15.

    Google Scholar 

  50. Chernov, S.V., Vlasov, M.Yu., and Murin, I.V., Some Aspects of Ionic Transport in Lead(II) Tetrafluorostan-nate( II), IX Vsesoyuznaya konferentsiya po fizicheskoi khimii i elektrokhimii ionnykh rasplavov i tverdykh elek-trolitov (IX All-Union Conf. on the Physical Chemistry and Electrochemistry of Ionic Melts and Solid Electro-lytes), Sverdlovsk, 1987, vol. 3, pp. 100–101.

    Google Scholar 

  51. Vaitkus, R., Peceliunaite, A., and Orliukas, A., Electrical Properties of α-PbSnF 4 in Frequency Region 10–8 X 1010 Hz, 7th Int. Conf. on Solid State Ionics, Hakone, 1989, p. 335.

  52. Villeneuve, G., Echegut, P., Lucat, C., et al., Mobilité de l'ion fluor dans PbSnF 4, Phys. Stat. Solidi B, 1980, vol. 97, no. 1, pp. 295–301.

    Google Scholar 

  53. Buznik, V.M., Vopilov, V.A., Vopilov, E.A., et al., NMR Study of PbF 2-Based Solid Solutions, VI Vsesoyuznyi simpozium po khimii neorganicheskikh ftoridov (VI All-Union Symp. on the Chemistry of Inorganic Fluorides), Novosibirsk, 1981, p. 46.

  54. Kanno, R., Ohno, K., Izumi, H., et al., Neutron Diffrac-tion Study of the High Fluoride Ion Conductor PbSnF 4, Prepared under an HF Atmosphere, Solid State Ionics, 1994, vol. 70/71, pp. 253–258.

    Google Scholar 

  55. Ito, Y., Mukoyama, T., and Yoshikado, S., On Ionic Con-duction in the a-Phase PbSnF 4, Solid State Ionics, 1995, vol. 80, pp. 317–320.

    Google Scholar 

  56. Denes, G., Milova, G., Madamba, M.C., and Perfiliev, M., Structure and Ionic Transport of PbSnF 4 Superionic Conductor, Solid State Ionics, 1996, vols. 86–88, no. 1, pp. 77–82.

    Google Scholar 

  57. Collin, A., Denes, G., Le Roux, D., et al., Understanding the Phase Transitions and Texture in Superionics PbSnF 4: A Key to Reproducible Properties, Int. J. Inorg. Mater., 1999, vol. 1, no. 5/6, pp. 289–301.

    Google Scholar 

  58. Sorokin, N.I., Nikol'skaya, O.K., Fedorov, P.P., et al., Electrical Conductivity of Hydrothermally Grown Low-Temperature PbF2 and PbSnF4 Single Crystals, X Simpo-zium po khimii neorganicheskikh ftoridov (X Symp. on the Chemistry of Inorganic Fluorides), Moscow, 1998, p. 152.

  59. Nikol'skaya, O.K., Dem'yanets, L.N., and Sorokin, N.I., Hydrothermal Synthesis and Ionic Conductivity CdF2 and the Low-Temperature Forms of PbF 2 and PbSnF4, Kristallografiya, 2002, vol. 47, no. 4, pp. 754–759.

    Google Scholar 

  60. Kanno, R., Nakamura, S., and Kawamoto, Y., Ionic Con-ductivity of Tetragonal PbSnF 4 Substituted by Aliovalent Zr 4+, Al 3+, Ga 3+, In 3+, and Na +, Solid State Ionics, 1992, vol. 51, pp. 53–59.

    Google Scholar 

  61. Chernov, S.V., Moskvin, A.L., Murin, I.V., et al., System SnF 2–SnO, Zh. Neorg. Khim., 1989, vol. 34, no. 9, pp. 2429–2431.

    Google Scholar 

  62. Moskvin, A.L., Chernov, S.V., Grebenshchikov, R.G., et al., Phase Equilibria and Electrical Conduction in the System SnF 2–SnS, Zh. Neorg. Khim., 1990, vol. 35, no. 6, pp. 1567–1568.

    Google Scholar 

  63. Yoschido, S., Ito, Y., and Reau, J.M., Fluoride Ion Con-duction in Pb1-x Sn x F 2 Solid Solution System, Solid State Ionics, 2002, vol. 154/155, pp. 503–509.

    Google Scholar 

  64. Murin, I.V., Glumov, O.V., Samusik, D.B., et al., Solid Electrolyte Monitoring of Fluorine in Air, II Vse-soyuznaya konferentsiya po metodam i sredstvam kon-trolya zagryazneniya atmosfery i promyshlennykh vybrosov i ikh primenenie (II All-Union Conf. on Tech-niques and Facilities for Environmental Pollution and Industrial Emission Monitoring), Leningrad, 1988, pp. 228–233.

  65. Fergus, J.W., The Application of Solid Fluoride Electro-lytes in Chemical Sensors, Sens. Actuators,B, 1997, vol. 42, pp. 119–130.

    Google Scholar 

  66. Hagenmuller, P., Reau, J.M., Lucat, C., et al., Ionic Con-ductivity of Fluorite-Type Fluorides, Solid State Ionics, 1981, vol. 3/4, pp. 341–345.

    Google Scholar 

  67. Kleitz, M., Siebert, E., and Fouletier, J., Recent Develop-ments in Oxygen Sensing with a Solid Electrolyte Cell, Proc. Int. Meet. on Chemical Sensors, Fukuoka, 1983, pp. 262–272.

  68. Sakuma, Y., Kuwano, J., and Kato, M., An Electrolyte for Solid-State Oxygen Sensors: Ba(SnF 3 ) 2, Denki Kagaku, 1989, vol. 57, no. 11, pp. 1098–1099.

    Google Scholar 

  69. Aleinikov, A.N., Aleinikov, N.N., Vershinin, N.N., and Malov, Yu.I., Fluorine Determination in Gas Mixtures, IX Vsesoyuznyi simpozium po khimii neorganicheskikh ftoridov (IX All-Union Symp. on the Chemistry of Inor-ganic Fluorides), Cherepovets, 1990, p. 31.

  70. Ukshe, A.E., Maklakova, E.L., and Vakulenko, A.M., Electrochemical Response of a Fast Fluoride-Ion Trans-port System, Fiz. Tverd. Tela (Leningrad), 1989, vol. 31, no. 10, pp. 189–192.

    Google Scholar 

  71. Salardenne, J., Labidi, F., and Birot, D., A Thin Film Electrochemical Oxygen Sensor Working near Room Temperature, Solid State Ionics, 1988, vols. 28–30, pp. 1648–1652.

    Google Scholar 

  72. Kuwano, J., Asano, M., Shigehara, K., and Kato, M., Ambient Temperature Solid State Oxygen Sensor Using Fast Ion Conductors PbSnF 4 and Ag 6 I 4 WO 4, Solid State Ionics, 1990, vol. 40/41, pp. 472–475.

    Google Scholar 

  73. Eguchi, T., Suda, S., Amasaki, H., et al., Optimum Design for the Sensing Electrode Mixtures of PbSnF 4-Based Oxygen Sensors for Fast Response at Ambient Temperature, Solid State Ionics, 1999, vol. 121, nos. 1-4, pp. 235–243.

    Google Scholar 

  74. Wakagi, A., Kuwano, J., Kato, M., and Hanamoto, H., Fast Amperometric Response of Ambient Temperature Oxygen Sensor Based on PbSnF4; Iron(II) Phthalocya-nineBased Sensing Electrodes Containing Carbon Microbeads, Solid State Ionics, 1994, vol. 70/71, pp. 601–605.

    Google Scholar 

  75. Murin, I.V., Defect Generation and Transport in Group I–IV Binary Halides, Doctoral (Chem.) Dissertation, Len-ingrad: Leningrad. Gos. Univ., 1984.

    Google Scholar 

  76. Harke, S., Wiemhofer, H.D., and Gopel, W., Investiga-tions of Electrodes for Oxygen Sensor Based on Lantha-num Trifluoride as Solid Electrolyte, Sens. Actuators, B, 1990, vol. 1, pp. 188–194.

    Google Scholar 

  77. Kroger, C., Niggemeier, H., Wiemhofer, H.D., et al., Ion Transport in Alkaline and Earth Alkaline Hydrogen Flu-orides, Solid State Ionics, 2002, vol. 154/155, pp. 48--495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, N.I. SnF2-Based Solid Electrolytes. Inorganic Materials 40, 989–997 (2004). https://doi.org/10.1023/B:INMA.0000041335.17098.d1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000041335.17098.d1

Keywords

Navigation