Skip to main content
Log in

Lamellar Self-Assembly Nanostructured Magnetic Materials

  • Published:
Inorganic Materials Aims and scope

Abstract

Synthesis of lamellar self-assemblies symmetric polystyrene–polybutylmethacrylate (PS–PBMA) copolymers, doped by magnetic nanoparticles was described. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. As soon as particles are coated by a grafted PS layer, they can be confined in the PS layer of the polymeric smectic. The lamellar order was maintained up to volume fractions of particles of 25% as determined by transmission electron microscopy. This volume fraction may be increased by addition of the PS homopolymer to the structure or by increasing the molecular weight of the diblock copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Stix, G., Little Big Science, Sci. Am., 2001, vol. 285, no. 3, pp. 26–32.

    Google Scholar 

  2. Hamley, I.W., Nanostructure Fabrication Using Block Copolymers, Nanotechnology, 2003, vol. 14, pp. R3--R54.

    Google Scholar 

  3. Bates, F.S. and Fredrickson, G.H., Block Copolymer Thermodynamics: Theory and Experiment, Annu. Rev. Phys. Chem., 1990, vol. 41, pp. 525–557.

    Google Scholar 

  4. Hamley, I.W., Physics of Block Copolymers, Oxford: Oxford Univ. Press, 1999.

    Google Scholar 

  5. Hadjichristidis, N., Pispas, S., and Floudas, G., Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, New York: Wiley, 2003.

    Google Scholar 

  6. Hamley, I.W., Developments in Block Copolymer Science and Technology, Chichester: Wiley, 2003.

    Google Scholar 

  7. Matsen, M.W., The Standard Gaussian Model for Block Copolymers Melts, J. Phys.: Condens. Matter, 2002, vol. 14, pp. R21–R47.

    Google Scholar 

  8. Hamley, I.W., Structure and Flow Behavior of Block Copolymers, J. Phys.: Condens. Matter, 2001, vol. 13, pp. R643–R671.

    Google Scholar 

  9. Bates, F.S. and Fredrickson, G.H., Block Copolymers-Designer Soft Materials, Phys. Today, 1999, vol. 52, pp. 32–38.

    Google Scholar 

  10. Drolet, F. and Fredrickson, G.H., Optimizing Chain Bridging in Complex Block Copolymers, Macromole-cules, 2001, vol. 34, pp. 5317–5324.

    Google Scholar 

  11. Bohbot-Raviv, Y. and Wang, Z.G., Discovering New Ordered Phases of Block Copolymers, Phys. Rev. Lett., 2001, vol. 85, pp. 3428–3431.

    Google Scholar 

  12. Fabre, P., Casagrande, C., Veyssie, M., et al., Ferrosmectics: A New Magnetic and Mesoscopic Phase, Phys. Rev. Lett., 1990, vol. 64, no. 5, pp. 539–542.

    Google Scholar 

  13. Menager, C., Belloni, L., Cabuil, V., et al., Osmotic Equilibrium between an Ionic Magnetic Fluid and an Electrostatic Lamellar Phase, Langmuir, 1996, vol. 12, no. 14, pp. 3516–3522.

    Google Scholar 

  14. Rosensweig, R., Ferrohydrodynamics, Cambridge: Cambridge Univ. Press, 1985.

    Google Scholar 

  15. Mansky, P., Russell, T.P., Hawker, C.J., et al., Ordered Diblock Copolymer Films on Random Copolymer Brushes, Macromolecules, 1997, vol. 30, pp. 681--6813.

    Google Scholar 

  16. Coulon, G., Collin, B., Ausserre, D., et al., Islands and Holes on the Free Surface of Thin Diblock Copolymers Films: 1. Characteristics of Formation and Growth, J. Phys., 1990, vol. 51, pp. 2801–2809.

    Google Scholar 

  17. Coulon, G., Ausserre, D., and Russell, T.P., Interference Microscopy on Thin Diblock Copolymers Films, J. Phys., 1990, vol. 51, pp. 777–783.

    Google Scholar 

  18. Hamdoun, B., Ausserre, D., Joly, S., et al., New Nano-composite Materials, J. Phys. II, 1996, vol. 6, pp. 49--501.

    Google Scholar 

  19. Cabuil, V., Hochart, H., Perzynski, R., and Lutz, P.J., Synthesis of Cyclohexane Magnetic Fluids through Adsorption of End-Functionalized Polymers on Mag-netic Particles, Prog. Colloid. Polym. Sci., 1994, vol. 97, pp. 75–79.

    Google Scholar 

  20. Massart, R., Preparation of Aqueous Magnetic Liquid in Alkaline and Acidic Media, IEEE Trans. Magn., 1981, vol. 17, no. 2, p. 1247.

    Google Scholar 

  21. Bacri, J.C., Perzynski, R., Salin, D., et al., Magnetic Colloidal Properties of Ionic Ferrofluids, J. Magn. Magn. Mater., 1986, vol. 62, pp. 36–46.

    Google Scholar 

  22. Dubois, E., Cabuil, V., Massart, R., et al., Preparation and Properties of Monodisperse Magnetic Fluids, J. Magn. Magn. Mater., 1995, vol. 149, pp. 1–5.

    Google Scholar 

  23. Trent, J.S., Scheinbeim, J.I., and Couchman, P.R., Ruthenium Tetraoxide Staining of Polymers, Macromolecules, 1983, vol. 16, pp. 589–598.

    Google Scholar 

  24. Lauter-Pasyuk, V., Lauter, H.J., Ausserre, D., et al., Effect of Nanoparticle Size on the Internal Structure of Copolymer–Nanoparticles Composite Thin Films Stud-ied by Neutron Reflection, Physica B (Amsterdam), 1998, vol. 241, pp. 1092–1094.

    Google Scholar 

  25. Hamboun, B., Ausserre, D., Cabuil, V., and Joly, S., Composites copolymères–nanoparticule: I. Période-lamellaire dans le régime des “petites nanoparticules,” J. Phys. II, 1996, vol. 6, pp. 503–510.

    Google Scholar 

  26. Lauter-Pasyuk, V., Lauter, H.J., Ausserre, D., et al., Neutron Reflectivity Studies of Composite Nanoparticle Copolymer Thin Films, Physica B (Amsterdam), 1998, vol. 248, pp. 243–245.

    Google Scholar 

  27. Lefebure, S., Cabuil, V., Ausserre, D., et al., Lamellar Composite Magnetic Materials, Prog. Colloid. Polym. Sci., 1998, vol. 110, pp. 94–98.

    Google Scholar 

  28. Hamdoun, B., Ausserre, D., and Joly, S., Composites Copolymères–Nanoparticule: courbure, J. Phys. II, 1996, vol. 6, pp. 1–10.

    Google Scholar 

  29. Edrington, A.C., Urbas, A.M., DeRege, P., et al., Poly-mer-Based Photonic Crystals, Adv. Mater., 2001, vol. 13, pp. 421–425.

    Google Scholar 

  30. Fink, Y., Urbas, A.M., Bawendi, M.G., et al., Block Copolymers as Photonic Bandgap Materials, J. Light-wave Technol., 1999, vol. 17, no. 11, pp. 1963–1969.

    Google Scholar 

  31. Fink, Y., Thomas, E.L., Urbas, A., et al., Self Assembly Block Copolymer Structures as Photonic Crystals, Abstr. Pap. Am. Chem. Soc., 2001, vol. 221, PHYS part 2, p. 36.

    Google Scholar 

  32. Fink, Y., Winn, J.N., Fan, S., et al., Dielectric Omnidirectional Reflector, Science, 1998, vol. 282, pp. 1679–1682.

    Google Scholar 

  33. Urbas, A., Sharp, R., Fink, Y., et al., Tunable Block Copolymer/Homopolymer Photonic Crystals, Adv. Mater., 2000, vol. 12, no. 11, pp. 812–814.

    Google Scholar 

  34. Bockstaller, M.R., Kolb, R., and Thomas, E.L., Metallodielectric Photonic Crystals Based on Diblock Copolymers, Adv. Mater., 2001, vol. 13, no. 23, pp. 1783–1786.

    Google Scholar 

  35. Hamboun, B., Composites Copolymères/Nanoparticules, PhD Thesis, Maine Univ., 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdoun, B. Lamellar Self-Assembly Nanostructured Magnetic Materials. Inorganic Materials 40, 949–954 (2004). https://doi.org/10.1023/B:INMA.0000041327.72483.ab

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000041327.72483.ab

Keywords

Navigation