Skip to main content
Log in

Effect of Boron Impurity on the Raman Spectrum of Synthetic Diamond

  • Published:
Inorganic Materials Aims and scope

Abstract

Raman spectra attest to a high structural perfection of undoped diamond prepared via hydrocarbon decomposition and good quality of boron-doped diamond at doping levels below 0.01 at %. The Fano resonance observed on the first-order Raman scattering peak points to metallic conduction in diamond containing more than 0.1 at % B. The plot of the width of the Raman peak against its frequency shows a jump between 0.04 and 0.1 at % B. Therefore, the transition from semiconducting behavior of diamond to metallic conduction results in an additional contribution to the scattering of phonons, which comes from free carriers. The agreement between the data for boron-doped (0.01–0.1 at %) and neutron-irradiated diamonds lends support to the assumption that, at doping levels above 0.01 at %, boron may be incorporated into diamond interstitially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Custers, J.F.H., Semiconductivity of a Type IIb Diamond, Nature (London), 1955, vol. 176, no. 4473, pp. 173–174.

    Google Scholar 

  2. Landolt, H. and Börnstein, R., New Series Group III: Crystal and Solid State Physics, vol. 17: Semiconduc-tors, subvol. a: Physics of Group IV Elements and III–V Compounds, New York: Springer, 1987, p. 37.

    Google Scholar 

  3. Yakovlev, E.N., Voronov, O.A., and Rakhmanina, A.V., Synthesis of Diamond from Hydrocarbons, Sverkhtverd. Mater., 1984, no. 4, pp. 8–11.

    Google Scholar 

  4. Voronov, O.A. and Rakhmanina, A.V., Cubic Cell Parameter of Boron-Doped Diamond, Neorg. Mater., 1993, vol. 29, no. 5, pp. 623–626 [Inorg. Mater. (Engl. Transl.), vol. 29, no. 5, pp. 533–535].

    Google Scholar 

  5. Serebryanaya, N.R., Losev, V.G., Voronov, O.A., et al., Morphology of Diamond Crystals Synthesized from Hydrocarbons, Kristallografiya, 1985, vol. 30, no. 5, pp. 1026–1027.

    Google Scholar 

  6. Nachal'naya, T.Ya., Podzyarei, G.A., Shul'man, et al., ESR Spectra of Diamonds Synthesized from Hydrocarbons, Fiz. Tekh. Vys. Davlenii, 1986, vol. 18, no. 21, pp. 40–42.

    Google Scholar 

  7. Fano, U., Effect of Configuration Interaction on Intensi-ties and Phase Shifts, Phys. Rev., 1961, vol. 124, no. 6, pp. 1866–1878.

    Google Scholar 

  8. Prirodnye almazy Rossii (Natural Diamonds of Russia), Kvaskov, V.B., Ed., Moscow: Polyaron, 1997.

    Google Scholar 

  9. Gonon, P., Gheeraert, E., Deneuville, A., and Fontaine, F., Characterization of Heavily B-Doped Polycrystalline Diamond Films Using Raman Spectroscopy and Electron Spin Resonance, J. Appl. Phys., 1995, vol. 78, no. 12, pp. 7059–7062.

    Google Scholar 

  10. Watanabe, K., Ushizawa, K., Ando, T., et al., Polarization Dependence of Raman Scattering Spectra from Heavily Boron Doped CVD Diamond, Proc. IX NIRIM Int. Symp., Tsukuba, 2002, pp. 99–100.

  11. Cerdeira, F., Fjeldly, T.A., and Cardona, M., Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-Type Si: II. Optical Modes, Phys. Rev. B: Solid State, 1973, vol. 8, no. 10, pp. 4734–4745.

    Google Scholar 

  12. Ager III, J.W., Walukiewicz, W., McCluskey, M., et al., Fano Interference of the Raman Phonon in Heavily Boron-Doped Diamond Films Grown by Chemical Vapor Deposition, Appl. Phys. Lett., 1995, vol. 66, no. 5, pp. 616–618.

    Google Scholar 

  13. Massarani, B., Bourboin, J.C., and Chrenko, R.M., Hopping Conduction in Semiconducting Diamond, Phys. Rev. B: Solid State, 1978, vol. 17, no. 4, pp. 1758–1769.

    Google Scholar 

  14. Davydov, V.A., Eremets, M.I., Revin, O.G., and Struzh-kin, V.V., Impurity Absorption Spectra and Activation Energy of Conduction of p-Type Synthetic Diamonds, Sverkhtverd. Mater., 1990, no. 2, pp. 8–13.

    Google Scholar 

  15. Davydov, V.A., Eremets, M.I., Revin, O.G., and Struzh-kin, V.V., Optical Properties of Semiconducting Synthetic Diamonds with Different Impurity Compositions, in Opticheskaya spektroskopiya i elektronnyi paramag-nitnyi rezonans primesei i defektov v almaze (Optical Spectroscopy and Electron Spin Resonance of Impurities and Defects in Diamond), Kiev: Inst. Sverkhtverdykh Materialov Akad. Nauk Ukr. SSR, 1986, pp. 28–33.

    Google Scholar 

  16. Lagrange, J.-P., Deneuville, A., and Greerart, E.A., Large Range of Boron with Low Compensation Ratio for Homoepitaxial Diamond Films, Carbon, 1999, vol. 37, pp. 807–810.

    Google Scholar 

  17. Brunet, F., Germi, P., Deneuville, A., et al., The Effect of Boron Doping on the Lattice Parameter of Homoepitaxial Diamond Films, Diamond Relat. Mater., 1998, vol. 7, pp. 869–873.

    Google Scholar 

  18. Liu, M.S., Bursill, L.A., and Prawer, S., Temperature Dependence of the First-Order Raman Phonon Line of Diamond, Phys. Rev. B: Condens. Matter, 2000, vol. 61, no. 5, pp. 3391–3395.

    Google Scholar 

  19. Debernardi, A., Baroni, S., and Molinari, E., Anhar-monic Phonon Lifetime in Semiconductors from Density-Functional Perturbation Theory, Phys. Rev. Lett., 1995, vol. 75, pp. 1819–1822.

    Google Scholar 

  20. Widulle, F., Serrano, J., and Cardona, M., Disorder-Induced Phonon Self-energy of Semiconductors with Binary Isotopic Composition, Phys. Rev. B: Condens. Matter, 2002, vol. 65, p. 075 206 (1–10).

    Google Scholar 

  21. Hanzawa, H., Umemura, N., Nisida, Y., et al., Disorder Effects of Nitrogen Impurities, Irradiation-Induced Defects, and C13 Isotope Composition on the Raman Spectrum in Synthetic Ib Diamond, Phys. Rev. B: Condens. Matter, 1996, vol. 54, no. 6, pp. 3793–3799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utyuzh, A.N., Timofeev, Y.A. & Rakhmanina, A.V. Effect of Boron Impurity on the Raman Spectrum of Synthetic Diamond. Inorganic Materials 40, 926–931 (2004). https://doi.org/10.1023/B:INMA.0000041323.35298.dd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000041323.35298.dd

Keywords

Navigation