Skip to main content
Log in

Effect of Synthesis Conditions on the Lithium Nonstoichiometry and Properties of La2/3 – x Li3x 4/3 – 2x M2O6 (M = Nb, Ta) Perovskite-like Solid Solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

The effects of the nominal composition and synthesis conditions on the lithium nonstoichiometry of La2/3 – x Li3x 4/3 – 2x Nb2O6 (I) and La2/3 – x Li3x 4/3 – 2x Ta2O6 (II) solid solutions are studied. The results demonstrate that lithium losses can be reduced from 26–30 to 14–15 mol % in system I and from 15 to 4 mol % in system II. It is shown that the disturbance of electroneutrality caused by Li nonstoichiometry in the solid solutions is eliminated via the formation of oxygen vacancies in positions O(1) (1f: 1/2 1/2 0) and O(2) (1h: 1/2 1/2 1/2) of the cation-deficient perovskite structure. The optimal lithium ion conductivity is offered by solid solutions with □/3x ≃ 2.6 and x ≃ 0.136–0.143.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Belous, A.G., Novitskaya, G.N., Polyanetskaya, S.V., and Gornikov, Yu.I., Properties of La2/3-xLi3xTiO3 Oxides, Izv. Akad. Nauk SSSR, Neorg. Mater., 1987, vol. 23, no. 3, pp. 470–472.

    Google Scholar 

  2. Emery, G., Buzare, G.Y., Bohnke, O., and Fourquet, G.L., Lithium-7 NMR and Ionic Conductivity Studies of Lanthanium Lithium Titanate Electrolytes, Solid State Ionics, 1997, vol. 99, pp. 41–51.

    Google Scholar 

  3. Bohnke, O., Bohnke, C., and Fourquet, G.L., Mechanism of Ionic Conduction and Electrochemical Intercalation of Li+ into the Perovskite Lanthanium Lithium Titanate, Solid State Ionics, 1996, vol. 91, pp. 21–31.

    Google Scholar 

  4. Mirumoto, K. and Hayashi, S., Conductivity Relaxation in Lithium Ion Conductors with the Perovskite-Type Structure, Solid State Ionics, 2000, vol. 127, pp. 241–251.

    Google Scholar 

  5. Mirumoto, K. and Hayashi, S., Lithium Ion Conduction in A-Site Deficient Perovskites R1/4Li1/4TaO3 (R = La, Nd, Sm, and Y), Solid State Ionics, 1999, vol. 116, pp. 263–269.

    Google Scholar 

  6. Garsia-Martin, S., Royo, J.M., Tsukamoto, H., et al., Lithium-Ion Conductivity in the Novel La1/3-xLi3xNbO3 Solid Solution with Perovskite-Related Structure, Solid State Ionics, 1999, vol. 116, pp. 11–18.

    Google Scholar 

  7. Shan, Y.J., Sinozaki, N., and Nakamura, T., Preparation and Characterizations of New Perovskite Oxides LaxNa1 ??3x-yLiy(2xNbO3 (0.0 ??x and y ??0.2), Solid State Ionics, 1998, vol. 108, pp. 403–406.

    Google Scholar 

  8. Garcia-Alvarado, F., Varez, A., Moran, E., and Alario-Franco, M.A., Structural Details and Lithium Intercalation in the Perovskite La0.5Li0.5TiO3, Phase Transitions, 1996, vol. 58, pp. 111–120.

    Google Scholar 

  9. Rooksby, H.P., White, E.A.D., and Langston, S.A., Perovskite Type Rare-Earth Niobates and Tantalates, J. Am. Ceram. Soc., 1965, vol. 48, pp. 447–449.

    Google Scholar 

  10. Belous, A.G., Gavrilenko, O.N., Pashkova, E.V., and Mirnyi, V.N., Lithium Ion Conductivity and Crystal Chemistry of La2/3-xLi3x_4/3-2xNb2O6 Perovskite-Related Solid Solutions, Elektrokhimiya, 2002, vol. 38, no. 4, pp. 479–484.

    Google Scholar 

  11. Gavrilenko, O.N., Belous, A.G., Pashkova, E.V., and Mirnyi, V.N., Structural and Transport Properties of La2/3-xLi3x_4/3-2xTa2O6 Perovskite-like Solid Solutions, Neorg. Mater., 2002, vol. 38, no. 9, pp. 1126?1130 [Inorg. Mater. (Engl. Transl.), vol. 38, no. 9, pp. 949?953].

    Google Scholar 

  12. Belous, A., Pashkova, E., Gavrilenko, O., et al., Lithium Ion-Conducting Materials Based on Complex Metaniobates and Metatantalates La2/3-xLi3x_4/3-2x [Nb]Ta2O6 with Defect-Perovskite Structure, Ionics, 2002, vol. 9, pp. 21–27.

    Google Scholar 

  13. Belous, A.G., Pashkova, E.V., Gavrilenko, O.N., et al., Heat-Treatment-Induced Phase Transformations in the Li2CO3-La2O3-Nb2O5 System, Ukr. Khim. Zh., 2000, vol. 66, pp. 37–41.

    Google Scholar 

  14. Certificate of Analysis: Standard Reference Material 1976, Instrument Sensitivity Standard for X-ray Powder Diffraction, Gaithersburg: National Inst. of Standards and Technology, 1991, pp. 1-4.

  15. Knipovich, Yu.N. and Morachevskii, Yu.V., Analiz mineral'nogo syr'ya (Analysis of Mineral Raw Materials), Leningrad: Khimicheskaya Literatura, 1956.

    Google Scholar 

  16. Belous, A.G., Pashkova, E.V., Gavrilenko, O.N., et al., Heat-Treatment-Induced Phase Transformations in the Li2CO3-La2O3-Ta2O5 System, Ukr. Khim. Zh., 2001, vol. 67, pp. 69–74.

    Google Scholar 

  17. Plyushchev, V.E. and Stepin, B.D., Khimiya i tekhnologiya soedinenii litiya, rubidiya i tseziya (Chemistry and Technology of Lithium, Rubidium, and Cesium Compounds), Moscow: Khimiya, 1970.

    Google Scholar 

  18. Carruthers, I.P., Peterson, G.E., Crasso, M., and Bridenbaugh, P.M., Nonstoichiometry and Crystal Growth of Lithium Niobate, J. Appl. Phys., 1971, vol. 42, no. 5, p. 1846.

    Google Scholar 

  19. Palatnikov, M.N., Sidorov, N.V., Skiba, V.I., et al., Effects of Nonstoichiometry and Doping on the Curie Temperature and Defect Structure of Lithium Niobate, Neorg. Mater., 2000, vol. 36, no. 5, pp. 593–598 [Inorg. Mater. (Engl. Transl.), vol. 36, no. 5, pp. 489-493].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belous, A.G., Gavrilenko, O.N., Pashkova, E.V. et al. Effect of Synthesis Conditions on the Lithium Nonstoichiometry and Properties of La2/3 – x Li3x 4/3 – 2x M2O6 (M = Nb, Ta) Perovskite-like Solid Solutions. Inorganic Materials 40, 867–873 (2004). https://doi.org/10.1023/B:INMA.0000037935.60011.1b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000037935.60011.1b

Keywords

Navigation