Skip to main content
Log in

Zinc Doping Profile in AlGaAs/GaAs Heteroepitaxial Structures Grown by Metalorganic Chemical Vapor Deposition

  • Published:
Inorganic Materials Aims and scope

Abstract

The Zn profile in Al x Ga1 – x As/GaAs (x = 0.2–0.4) quantum-well heteroepitaxial structures doped during growth by metalorganic chemical vapor deposition is modeled with allowance made for the diffusional broadening of the nominal doping profile. Experimentally determined carrier distributions in the heterostructures are used to refine the diffusion coefficient of Zn at a growth temperature of 770°C. The average value of D Zn is determined to be ∼6.0 × 10–14 cm2/s. The position of the pn junction in Al x Ga1 – x As/GaAs heterostructures is assessed as a function of the nominal Zn profile and growth rate. The ways of optimizing the doping profile are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gillin, W.P., Dunstan, D.J., Homewood, K.P., et al., Interdiffusion in InGaAs/GaAs Quantum Well Structures as a Function of Depth, J. Appl. Phys., 1993, vol. 73, no. 8, pp. 3782-3786.

    Google Scholar 

  2. Mukai, K., Sugawara, M., and Yamazaki, S., InterdiffusionProcess in Lattice-Matched InxGa1-xAsyP1-y / InP and GaAs/AlxGa1-xAs Quantum Wells, Phys. Rev. B: Condens. Matter, 1994, vol. 50, no. 4, pp. 2273-2282.

    Google Scholar 

  3. Casey, H.C., Jr. and Panish, M.B., Heterostructure Lasers, New York: Academic, 1978. Translated under the title Lazery na geterostrukturakh, Moscow: Mir, 1981, pp. 85-91.

    Google Scholar 

  4. Ahlgren, T., Likonen, J., Slotte, J., et al., Concentration Dependent and Independent Si Diffusion in Ion-Implanted GaAs, Phys. Rev. B: Condens. Matter, 1997, vol. 56, no. 8, pp. 4597-4603.

    Google Scholar 

  5. Kim, Y., Kim, M.S., Min, S.K., and Lee, C., Dislocation-Accelerated Diffusion of Si in Delta-Doped GaAs Grown on Silicon Substrates by Metalorganic Chemical Vapor Deposition, J. Appl. Phys., 1991, vol. 69, no. 3, pp. 1355-1358.

    Google Scholar 

  6. Strel'chenko, S.S. and Lebedev, V.V., Soedineniya AIIIBV (III-V Compounds), Moscow: Metallurgiya, 1984, pp. 65-66.

    Google Scholar 

  7. Bisberg, J.E., Chin, A.K., and Dabkowski, F.P., Zinc Diffusion in III-V Semiconductors Using a Cubic-Zirconia Protection Layer, J. Appl. Phys., 1990, vol. 67, no. 3, pp. 1347-1351.

    Google Scholar 

  8. Hettwer, H.G., Stolwijk, N.A., and Mehrer, H., Effects of Source Composition on Diffusion and Solubility of Zinc in Gallium Arsenide, Proc. Int. Conf. on Diffusion in Materials, DIMAT-96 (Nordkirchen, 1996), Zurich: Trans Tech Publications, 1997, vols. 143-147, pp. 1117?1125.

    Google Scholar 

  9. Chase, M.P., Deal, M.D., and Plummer, J.D., Diffusion Modeling of Zinc Implanted into GaAs, J. Appl. Phys., 1997, vol. 81, no. 4, pp. 1670-1676.

    Google Scholar 

  10. Polyanin, A.D., Vyaz'min, A.V., Zhurov, A.I., and Kazenin, D.A., ,Spravochnik po tochnym resheniyam uravnenii teplo-i massoperenosa (Handbook of Exact Solutions to Heat and Diffusion Equations), Moscow: Faktorial, 1998, p. 48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akchurin, R.K., Andreev, A.Y., Bulaev, P.V. et al. Zinc Doping Profile in AlGaAs/GaAs Heteroepitaxial Structures Grown by Metalorganic Chemical Vapor Deposition. Inorganic Materials 40, 787–790 (2004). https://doi.org/10.1023/B:INMA.0000037920.53242.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000037920.53242.0a

Keywords

Navigation