Skip to main content
Log in

Application of Diamond in High Technology

  • Published:
Inorganic Materials Aims and scope

Abstract

This review focuses on the critical issues and future directions in the application of diamond in high technology. Diamond nuclear radiation detectors, photosensors, photoemitters, spectral windows, active and passive microelectronic components, and microelectromechanical systems are discussed in detail. In Russia, high-technology diamond applications have not yet moved toward the manufacturing stage, even though Russia possesses immense resources of natural diamond and a considerable scientific potential in the field of creating unique synthetic diamonds, polycrystalline and single-crystal diamond films, and diamond-like compounds. We hope that the points raised in this review will provide the impetus for the development of diamond technology in Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gudden, D. and Pohl, R., Z. Phys.,1923, no. 17, p. 331.

  2. Friedman, H., Dirns, L.S., and Anvin, H.P., Phys. Rev., 1948, no. 73, p. 186.

    Article  Google Scholar 

  3. Konorova, E.A., Kozlov, S.F., and Vavilov, V.S., Ionization Currents in Diamond under 100 to 500 keV Electron Irradiation, Fiz. Tverd. Tela (Leningrad), 1966, vol. 8, no. 1, pp. 3–8.

    Google Scholar 

  4. Kozlov, S.F., Diamond Nuclear Radiation Detectors, Almaz v elektronnoi tekhnike (Diamond in Electronics), Kvaskov, V.B., Ed., Moscow: Energoatomizdat, 1990, pp. 34–56.

    Google Scholar 

  5. Mukhachev, Yu.S., Tatarinov, V.S., Borzenko, S.Yu., et al., Contributions of Different Trapping Centers to Polarization of Diamond Nuclear Radiation Detectors, Fiz. Tekh. Poluprovodn. (Leningrad), 1984, vol. 18, no. 4, pp. 460–464.

    Google Scholar 

  6. Kania, D.R., Landstrass, M.I., Plano, M.A., et al., Diamond Radiation Detectors, Diamond Relat. Mater.,1993, vol. 2, pp. 1012–1019.

  7. Razrabotka metodov registratsii myagkogo?-izlucheniya na osnove datchikov na almaznykh materialakh: Otchet (Techniques for Soft Gamma Radiation Detection Using Diamond Detectors: Research Report), Moscow: ZAO Tekhnomash-MT, 1999, p. 38.

  8. Vatnitsky, S.M., Kozlov, S.F., Martynov, S.S., and Khrunov, V.M., Diamond Nuclear Radiation Detector for Medical Radiology, II konferentsiya po problemam primeneniya almaza v elektronike (II Conf. on Electronic Applications of Diamond), Moscow, 1992, pp. 10–11.

  9. Katerininov, P.G., Lodigin, A.N., Martynov, S.S., and Khrunov, V.S., Nonpolarizing Radiation Detectors Based on Wide-Gap Semiconductor Single Crystals, Fiz. Tekh. Poluprovodn.(S.-Peterburg), 1999, vol. 33, no. 12, pp. 147–148.

    Google Scholar 

  10. Terent'ev, I. and Al'bikov, Z.A., Diamond Dosimeter of Pulsed Gamma Radiation, At. Energ., 1984, vol. 56, no. 2, pp. 101–102.

    Google Scholar 

  11. Timofeev, V.E. et al., Natural Diamond Scintillation Detector of Charged Particles, II konferentsiya po problemam primeneniya almaza v elektronike (II Conf. on Electronic Applications of Diamond), Moscow, 1992, p. 9.

  12. Diamonds for High Technology: 2A-Type Diamond Products, Products Review, Trekhgornyi: UralAlmazInvest, 2003.

  13. 13. Gulyaev, Yu. V., Altukhov, A.A., Eremin, N.V., et al., Radiation Intensity Detectors Based on Natural Diamonds, 247 WE-Heraeus Seminar, poster 10, Munich, 2000.

  14. Krasil'nikov, A.V., Neutron Spectrum Measurements Using Natural Diamond Detectors, Vopr. At. Nauki Tekh., 1995, no. 1, pp. 11–36.

  15. Bublik, M.A., Kulakov, V.M., Plotnikova, S.P., and Terent'ev, N.I., Nanosecond Kinetics of Long-Wavelength Diamond Luminescence, in Sbornik nauchnykh trudov (Collection of Scientific Works), Moscow: GlavAlmaz-Zoloto, 1990, pp. 156–158.

    Google Scholar 

  16. Hassard, J., The Neutron Radiation Hardness of Diamond Detectors for Future Particle Physics Experiments, Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, vol. 368, pp. 217–219.

    Google Scholar 

  17. Pillon, M., Angelone, M., and Krasilnikov, A.V., 14-MeV Neutron Spectra Measurements with 4% Energy Resolution Using a Type IIa Diamond Detector, Nucl. Instrum. Methods Phys. Res., Sect. B, 1995, vol. 101, p. 473.

  18. Khrunov, V.S., Martynov, S.S., Vatnitsky, S.M., et al., Diamond Detectors in Relative Dosimetry of Photon, Electron, and Proton Radiation Fields, Radiat. Prot. Dosim., 1990, vol. 33, pp. 155–157.

    Google Scholar 

  19. Konorova, E.A. and Kozlov, S.F., USSR Inventor's Certificate no. 224697, 1968.

  20. Bergonzo, P., Tromson, D., and Mer, C., Radiation Detection Devices Made from CVD Diamond, Semicond. Sci. Technol., 2003, vol. 18, no. 3, pp. 105–112.

    Article  Google Scholar 

  21. Altukhov, A.A., Afanasiev, S.A., Zaletaev, N.B., et al., Diamond Radiation and UV-Detectors, Workshop, Korea, 2003, pp. 95–99.

  22. Zaletaev, N.B., Alekseyev, A.G., Amosov, V.N., and Feigelson, B.N., Comparative Study of Natural and Synthetic Type IIa Diamond Detectors, Proc. SPIE-Int. Soc. Opt. Eng., 2000, vol. 4141, pp. 357–365.

    Google Scholar 

  23. Kaneko, J., Katagiri, M., Ikeda, Y., and Nishitani, T., Development of Radiation Detectors Using Synthetic Diamond Crystals, Proc. 5th NIRIM Int. Symp. on Advanced Materials (ISAM'98), Tsukuba, 1998, pp. 257–260.

  24. Tatarinov, V.S., Photoelectric Spectroscopy of Natural Diamond, Almaz v elektronnoi tekhnike (Diamond in Electronics), Kvaskov, V.B., Ed., Moscow: Energoatomizdat, 1990, pp. 110–127.

    Google Scholar 

  25. Issledovanie elektronnykh svoistv prirodnykh almazov pri vozdeistvii moshchnogo opticheskogo izlucheniya i sil'nykh elektricheskikh polei (Electronic Properties of Natural Diamond under High-Intensity Optical Irradiation and in Strong Electric Fields), Research Report no. 018900670011, Moscow, 1989, p. 90.

  26. Kvaskov, V.B., _Plotnikova, S.P., _Sedova, E.A., et al., Photoconductivity and Electron Emission in Natural Diamond Crystals, in Sbornik nauchnykh trudov (Collection of Scientific Works), Moscow: GlavAlmazZoloto, 1991, pp. 40–57.

    Google Scholar 

  27. Prirodnye almazy Rossii (Natural Diamonds of Russia), Kvaskov, V.B., Ed., Moscow: Polyaron, 1997, p. 304.

  28. Vavilov, V.S., Diamond in Solid State Electronics, Usp. Fiz. Nauk, 1997, vol. 40, no. 1, pp. 15–20.

    Google Scholar 

  29. Pan, L.S., Kania, D.R., Pianetta, P., et al., Temperature Dependent Mobility in Single-Crystal and Chemical Vapor-Deposited Diamond, J. Appl. Phys., 1993, vol. 73, no. 6, pp. 2888–2894.

    Article  Google Scholar 

  30. Afanas'ev, M.S. and Kvaskov, V.B., Diamond and Diamond Structures in UV Optoelectronics, Naukoemkie Tekhnol., 2003, vol. 4, no. 2, pp. 67–74.

    Google Scholar 

  31. Kvaskov, V.B. and Plotnikova, S.P., General Trends in the Photoconductivity Spectra of Natural Diamond, II konferentsiya po problemam primeneniya almaza v elektronike (II Conf. on Electronic Applications of Diamond), Moscow, 1992, pp. 68–69.

  32. Kvaskov, V.B. and Ostashchenko, A.Yu., Photoelectron Lifetime in Type IIa Diamond, in Almaz v tekhnike i elektronike (Diamond for Engineering and Electronic Applications), Moscow: Polyaron, 2000, pp. 61–68.

    Google Scholar 

  33. Kvaskov, V.B., Influence of ADefects on the Photoemission Spectra of Type IIa Diamond, Almaz v tekhnike i elektronike (Diamond for Engineering and Electronic Applications), Moscow: Polyaron, 2001, pp. 5–21.

    Google Scholar 

  34. Elektronnye pribory na osnove prirodnogo almaza: Prospekt (Electronic Devices Based on Natural Diamond: Products Review), Moscow: Polyaron, 1997.

  35. Diamonds for High Technology: Photovoltaic UV Detector FPYa-1,Reklamnyi prospekt (Products Review), Trekhgornyi: UralAlmazInvest, 2003.

    Google Scholar 

  36. Pace, E., Pini, A., Gorti, G., et al., CVD Diamond Optics for Ultraviolet, Diamond Relat. Mater.,2001, vol. 10, pp. 736–743.

    Article  Google Scholar 

  37. Binari, S.C., Marchywka, M., Koolbeck, D.A., et al., Diamond Metal-Semiconductor-Metal Ultraviolet Photodetectors, Diamond Relat. Mater., 1993, vol. 2, pp. 1020–1023.

  38. Pace, E., Di Benedetto, R., and Scuderi, S., Fast Stable Visible-Blind and Highly Sensitive CVD Diamond UV Photodetectors for Laboratory and Space Applications, Diamond Relat. Mater., 2000, vol. 9, pp. 987–993.

    Article  Google Scholar 

  39. Polyakov, V.I., Rukovishnikov, A.I., Rossukanyi, N.M., et al., Photodetectors with CVD Diamond Films: Electrical and Photoelectrical Properties of Photoconductive and Photodiode Structures, Diamond. Relat. Mater.,1998, vol. 7, pp. 821–825.

    Article  Google Scholar 

  40. Himpsel, F.J., Knapp, J.A., Van Vechten, J.A., and Eastman, D.E., Quantum Photoyield of Diamond(111)-a Stable Negative-Affinity Emitter, Phys. Rev. B: Condens. Matter, 1979, vol. 20, no. 2, pp. 624–627.

    Google Scholar 

  41. Kawamura, H., Maki, T., and Rjbayashi, T., Fabrication and Characterization of Planar Diamond Electron Emitters, Jpn. J. Appl. Phys., 1999, vol. 38, pp. 2622–2625.

    Article  Google Scholar 

  42. Mueller, W., Dewan, H.S., Chen, H., et al., Field Emission from Gated Diamond Arrays, Appl. Surf. Sci., 1999, vol. 146, pp. 328–333.

    Google Scholar 

  43. Garin, B.M. and Galdetskii, A.V., Two-Phonon Far-IR Absorption in Polymer Crystals, Opt. Spektrosk., 1981, vol. 50, no. 5, p. 987.

    Google Scholar 

  44. Galdetskii, A.V. and Garin, B.M., Optical Anharmonicity Induced Multiphonon IR Absorption in Crystals, Preprint of Inst. of Radio Engineering and Electronics, Moscow, 1981, no. 17 (320).

  45. Galdetskii, A.V. and Garin, B.M., Lowest Possible Millimeter and Submillimeter Wave Losses in Solid Dielectrics, Vsesoyuznaya nauchno-tekhnicheskaya konferentsiya po proektirovaniyu i primeneniyu radioelektronnykh ustroistv na dielektricheskikh volnovodakh i rezonatorakh (All-Union Conf. on the Design and Application of Electronic Devices Based on Dielectric Waveguides and Resonators), Saratov, 1983, pp. 98–99.

  46. Garin, B.M., One-Phonon Dielectric Losses Due to Excitation of Acoustic Vibrations, Fiz. Tverd. Tela (Leningrad), 1990, vol. 32, no. 11, pp. 3314–3321.

    Google Scholar 

  47. Garin, B.M., Lowest Possible Millimeter and Submillimeter Wave Losses in Solid Dielectrics, Rossiiskaya nauchno-tekhnicheskaya konferentsiya Dielektriki-93 (Dielectrics-93 Russian Science and Technology Conf.), St. Petersburg: S.-Peterburg. Gos. Tekhnicheskii Univ., 1993, pp. 98–99.

    Google Scholar 

  48. Garin, B.M., Kopnin, A.N., Parkhomenko, M.P., et al., A Method for Producing Silicon with Extremely Low Millimeter and Submillimeter Wave Losses, Pis'ma Zh. Tekh. Fiz., 1994, vol. 20, no. 21, pp. 56–59.

    Google Scholar 

  49. Garin, B.M., Kopnin, A.N., Parkhomenko, M.P., et al., Extremely Low Loss Materials at the Near Millimeter Wavelengths Range, Proc. 21st Int. Conf. on Infrared & Millimeter Waves, Berlin, 1996, paper CT15.

  50. Heidinger, R., Molla, J., and Parshin, V.V., Step to Intrinsic Absorption in Doped Silicon, Proc. 21st Int. Conf. on Infrared & Millimeter Waves, Berlin, 1996, paper AW8.

  51. Garin, B.M., Parshin, V.V., Ral'chenko, V.G., et al., Millimeter Wave Losses in Diamond, Pis'ma Zh. Tekh. Fiz., 1999, vol. 25, no. 7, pp. 85–89.

    Google Scholar 

  52. Ralchenko, V.G., Smolin, A.A., Konov, V.I., et al., Large-Area Diamond Deposition by Microwave Plasma, Diamond Relat. Mater.,1997, vol. 6, pp. 417–421.

    Article  Google Scholar 

  53. Parshin, V.V., Khmara, V.A., et al., Materials and Design of Output Gyrotron Windows, Proc. 9th Joint Russian-German Meeting on ECRH and Gyrotrons, 1997, pp. 143–144.

  54. Brandon, J.R., Coe, S.E., Susmann, R.S., et al., Development of CVD Diamond r.f. Windows for ECRH, Fusion Eng. Design, 2001, vol. 53, pp. 553–559.

    Article  Google Scholar 

  55. Garin, B.M., Parkhomenko, M.P., Parshin, V.V., et al., Extremely Low Loss Materials at the Near Millimeter Wavelengths Range, Proc. 7th Int. Conf. on Application of Diamond Films and Related Materials and 3rd Int. Conf. on Frontier Carbon Technology (ADC/FCT 2003), Tsukuba, 2003.

  56. Low-Pressure Synthetic Diamond: Manufacturing and Application, Dischler, B. and Wild, C., Eds., Berlin: Springer, 1998, p. 383.

  57. Tkachenko, V.I. and Kvaskov, V.B., Diamond Electronic Devices, Almaz v elektronnoi tekhnike (Diamond in Electronics), Kvaskov, V.B., Ed., Moscow: Energoatomizdat, 1990, pp. 22–23.

    Google Scholar 

  58. Mel'nikov, A.A., Zaitsev, A.I., Kurganskii, V.I., et al., Diamond-Based Semiconductor Structures, Almaz v elektronnoi tekhnike (Diamond in Electronics), Kvaskov, V.B., Ed., Moscow: Energoatomizdat, 1990, pp. 228–238.

    Google Scholar 

  59. Pang, L.S., Chan, S.S.M., Jonson, C., et al., High Temperature Polycrystalline Diamond Metal-Insulator-Semiconductor Field-Effect Transistor, Diamond Relat. Mater.,1997, no. 6, pp. 333–338.

  60. Umezawa, H., Tsugawa, K., Yamanaka, S., et al., High-Performance Diamond Metal-Semiconductor Field-Effect Transistors with 1 ?m Gate Length, Jpn. J. Appl. Phys., 1999, vol. 38, pp. 1122–1124.

    Article  Google Scholar 

  61. Fox, B.A., Hartsell, M.L., Malta, D.M., et al., Diamond Devices and Electrical Properties, Diamond Relat. Mater., 1992, no. 4, pp. 622–627.

  62. Chalker, P.R., Wide Bandgap Semiconductor Materials for High Temperature Electronics, Thin Solid Films, 1999, no. 343/344, pp. 612–622.

  63. 63. Nepsha, V.I. and Klyuev, Yu.A., Diamond Heat Sinks in Electronic Devices, Almaz v elektronnoi tekhnike (Diamond in Electronics), Kvaskov, V.B., Ed., Moscow: Energoatomizdat, 1990, pp. 140–155.

    Google Scholar 

  64. May, P.W., Diamond Thin Films: A 21st-Century Material, Philos. Trans. R. Soc. London, A, 2000, vol. 358, pp. 473–495.

    Google Scholar 

  65. 65. Technology Tour: Diamond Films for Micromechanical Systems (MEMS), www.itd.anl.gov/techtour/diamondmems.html.

  66. 66. MEMS Programs at DARPA,www.darpa.mil/mto/mems.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altukhov, A.A., Afanas'ev, M.S., Kvaskov, V.B. et al. Application of Diamond in High Technology. Inorganic Materials 40 (Suppl 1), S50–S70 (2004). https://doi.org/10.1023/B:INMA.0000036328.94568.7c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000036328.94568.7c

Keywords

Navigation