Skip to main content
Log in

Methods of High-Energy Chemistry in the Technology of Wide-Gap Chalcogenide Semiconductors

  • Published:
Inorganic Materials Aims and scope

Abstract

The application of radical beams in the technology of wide-gap semiconductors is discussed. Radical-beam gettering epitaxy, a technique based on the annealing of II–VI (III–V) crystals in activated nonmetal vapor, is considered. This technique offers the possibility of growing both n- and p-type II–VI and III–V epilayers. The use of radical beams in conjunction with molecular-beam epitaxy and metalorganic vapor-phase epitaxy processes makes it possible to produce p-type materials via doping with acceptor impurities in the form of excited molecules or atoms. The reduced growth temperature allows one to fabricate heterostructures with atomically sharp junctions owing to the absence of interdiffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Georgobiani, A.N., Kotlyarevsky, M.B., Mikhalenko, V.N., et al., USSR Inventor's Certificate no. 684 810, 1977.

  2. Takafumi Yao and Toshihiko Takeda, Growth Process in Atomic Layer Epitaxy of Zn Chalcogenide Single Crystalline Films on (100) GaAs, Appl. Phys. Lett.,1986, vol. 48, pp. 160–162.

    Article  Google Scholar 

  3. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North Holland, 1964. Translated under the title Khimiya nesovershennykh kristallov,Moscow: Mir, 1969.

    Google Scholar 

  4. Morozova, N.K. and Morozova, O.M., Diagram of Point-Defect Equilibria and Deviations from Stoichiometry in Zinc Sulfide, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 8, pp. 1335–1340.

    Google Scholar 

  5. Nyges, M.T., Thermodynamic Aspects of Point Defects in Zinc Selenide Single Crystals, Cand. Sci. (Phys.-Math.) Dissertation, Tallinn, 1974.

  6. Gurvich, A.M., Vvedenie v fizicheskuyu khimiyu kristallofosforov (Introduction to the Physical Chemistry of Phosphor Crystals), Moscow: Vysshaya Shkola, 1982.

    Google Scholar 

  7. Nikitenko, V.A., Stenli, S.A., and Morozova, N.K., Diagrams of Native-Point-Defect Equilibria and Deviations from Stoichiometry in Zinc Oxide, Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, no. 11, pp. 1830–1835.

    Google Scholar 

  8. Mikhalenko, V.N., Dement'ev, B.P., Kotlyarevsky, M.B., and Georgobiani, A.N., Low-Temperature Equilibrium Limit on the Compensation of Native-Defect Hole Conduction in Zinc Sulfide, Izv. Vyssh. Uchebn. Zaved., Fiz., 1978, no. 8, pp. 150–152.

  9. Georgobiani, A.N., Kotlyarevsky, M.B., and Mikhalenko, V.N., Defect Structure in Native-Defect p-Type ZnS, Izv. Akad. Nauk SSSR, Neorg. Mater.,1981, vol. 17, no. 8, pp. 1329–1334.

    Google Scholar 

  10. Georgobiani, A.N., Kotlyarevsky, M.B., and Mikhalenko, V.N., Native-Defect Luminescence Centers in p-Type ZnS, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad.Nauk. SSSR,1983, vol. 138, pp. 79–135.

    Google Scholar 

  11. Vinetskii, V.L. and Kholodar', G.A., Statisticheskoe vzaimodeistvie elektronov i defektov v poluprovodnikakh (Random Electron-Defect Interactions in Semiconductors), Kiev: Naukova Dumka, 1969.

    Google Scholar 

  12. Georgobiani, A.N. and Kotlyarevsky, M.B., Ion Implantation of Zinc Sulfide, Radiat. Eff., 1980, vol. 47, pp. 21?26.

    Google Scholar 

  13. Georgobiani, A.N., Kotlyarevsky, M.B., and Mikhalenko, V.N., Defect Equilibria in ZnS in Contact with Gold, Kratk. Soobshch. Fiz.,1977, no. 4, pp. 14–18.

  14. Georgobiani, A.N., Kotlyarevsky, M.B., Lastovka, V.V., and Noskov, D.A., Preparation of p-Type ZnSe via Arsenic Ion Implantation, Kratk. Soobshch. Fiz., 1977, no. 6, pp. 30–33.

  15. Georgobiani, A.N., Kotlyarevsky, M.B., and Mikhalenko, V.N., Kinetics of Neutral and Charged Defect Formation in II-VI Compounds in Equilibrium with Nonmetal Vapor, Izv. Akad. Nauk SSSR, Neorg. Mater., 1982, vol. 18, no. 1, pp. 12–17.

    Google Scholar 

  16. Zhu, Z., Nomura, T., Miyo, M., and Hagino, M., MBE Growth Mechanisms of ZnSe: Flux and Substrate Temperature, J. Cryst. Growth,1989, vol. 95, pp. 529–532.

    Article  Google Scholar 

  17. Koval'skii, P.N., Sheikman, M.K., Shneider, A.D., and Mel'nik, V.M., Parameters of Recombination Centers from Characteristics of a Photoelectret State, in Problemy fiziki soedinenii A2V6 (Current Topics in the Physics of II-VI Compounds), Vilnius: Vil'nyus. Gos. Univ., 1972.

    Google Scholar 

  18. Mikhalenko, V.N., Kotlyarevsky, M.B., Georgobiani, A.N., and Sokolov, V.A., Mechanism of Defect Formation in p-Type Zinc Sulfide Annealed in Sulfur Vapor, Zh. Fiz. Khim., 1980, vol. 54, pp. 345–348.

    Google Scholar 

  19. Georgobiani, A.N. and Kotlyarevsky, M.B., Kinetics of Intrinsic-Defect Formation in II-VI Single Crystals in Equilibrium with Nonmetal Vapor, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 7, pp. 1153–1158.

    Google Scholar 

  20. Georgobiani, A.N., Kotlyarevsky, M.B., Pegov, A.A., and Chernyavskii, B.G., A Model for Native-Defect Edge Emission Centers in Zinc Selenide, Izv. Vyssh. Uchebn. Zaved., Fiz., 1986, no. 10, pp. 105–107.

  21. Pegov, A.A., Structure of Acceptor Centers in Undoped p-Type Zinc Selenide, Cand. Sci. (Phys.-Math.) Dissertation, Tomsk, 1986.

  22. Kotlyarevsky, M.B., Leont'eva, O.P., and Pegov, A.A., Zero Radius Potential Calculations of the Energy Levelsof Native-Defect Acceptor Complexes in Zinc Selenide, III Vsesoyuznoe soveshchanie po fizike i tekhnologii shirokozonnykh poluprovodnikov (III All Union Conf. on the Physics and Technology of Wide-Gap Semiconductors), Makhachkala, 1986, p. 129.

  23. Kotlyarevsky, M.B., Georgobiani, A.N., Rogozin, I.V., and Marakhovskii, A.V., Luminescence of Oxygen Enriched ZnO, Zh. Prikl. Spektrosk., 2003, vol. 70, no. 1?3, pp. 86–89.

    Google Scholar 

  24. 24. Butkuzi, T.V., Bureyev, A.V., Georgobiani, A.N., et al., Optical and Electrical Properties of Radical Beam Gettering EpitaxyGrown n- and p- Type ZnO Single CrystalsJ. Cryst. Growth, 1992, vol. 117, pp. 366-369.

    Article  Google Scholar 

  25. 25. Fizika soedinenii AIIBVI (Physics of II-VI Compounds), Georgobiani, A.N. and Sheikman, M.K., Eds., Moscow: Nauka, 1986, pp. 80–83.

  26. Georgobiani, A.N., Kotlyarevsky, M.B., and Rogozin, I.V., Phase Content and Photoluminescence of ZnO Layers Obtained on ZnSe Substrates by Radical-Beam Gettering Epitaxy, Nucl. Phys. B, 1999, vol. 78, pp. 484?487.

    Google Scholar 

  27. Takafumi Yao and Yasumasa Okada, Phosphorus Acceptor Levels in ZnSe Grown by Molecular Beam Epitaxy, J. Appl. Phys., 1986, vol. 25, pp. 821–827.

    Google Scholar 

  28. Nakahara, K., Tanabe, T., Takasu, H., et al., Growth of Undoped ZnO Films with Improved Electrical Properties by Radical Source Molecular Beam Epitaxy, Jpn. J. Appl. Phys., 2001, vol. 40, pp. 250–254.

    Article  Google Scholar 

  29. Naoki Ohashi, Tomokazu Nakata, Takashi Sekiguchi, et al., Yellow Emission from Zinc Oxide Giving an Electron Spin Resonance Signal at g = 1.96, Jpn. J. Appl. Phys., 1999, vol. 38, pp. 113–115.

    Article  Google Scholar 

  30. Reynolds, D.C., Look, D.C., Jogai, B., et al., Valence-Band Ordering in ZnO, Phys. Rev. B: Condens. Matter, 1999, vol. 60, pp. 2340–2345.

    Google Scholar 

  31. Georgobiani, A.N., Kotlyarevsky, M.B., Kidalov, V.V., and Rogozin, I.V., ZnO/ZnSe Structures Prepared by Radical-Beam Getter Epitaxy, Neorg. Mater., 1997, vol. 33, no. 2, pp. 232–235 [Inorg. Mater.(Engl. Transl.), vol. 33, no. 2, pp. 185-188].

    Google Scholar 

  32. Shigeo Fujita, Akira Tanabe, Takao Sakamoto, et al., Growth Rate Enhancement by Xenon Lamp Irradiation in Organometallic Vapor-Phase Epitaxy of ZnSe, Jpn. J. Appl. Phys., 1987, vol. 26, pp. L2000–L2002.

    Google Scholar 

  33. Kitagawa, M., Tomomura, Y., Nakanishi, K., et al., Photo-Assisted Homoepitaxial Growth of ZnS by Molecular Beam Epitaxy, J. Cryst. Growth, 1990, vol. 101, pp. 52–55.

    Article  Google Scholar 

  34. Matsumura, N., Fukada, T., Senga, K., et al., Photo-Assisted MBE Growth of ZnSe on GaAs Substrates, J. Cryst. Growth, 1991, vol. 111, pp. 787–791.

    Article  Google Scholar 

  35. Matsumura, N., Senga, K., Kakuta, J., et al., Study on the Behavior of Surface Adatoms during Photoassisted MBE of ZnSe and Improvement of Surface Morphology, J. Cryst. Growth, 1991, vol. 115, pp. 279–283.

    Article  Google Scholar 

  36. Fujita, S., Hirata, S., and Fujita, S., Investigation of Photo-Induced Surface Reactions by Mass Analysis in OMVPE of II-VI Semiconductors, J. Cryst. Growth, 1991, vol. 115, pp. 269–273.

    Article  Google Scholar 

  37. Sakurai, F., Suto, K., Oyama, Y., and Nishizawa, J., n-Type ZnSe Crystal Growth by MOVPE Under Atmospheric Pressure with UV Irradiation on Stoichiometry-Controlled p-Type ZnSe Crystals, J. Cryst. Growth, vol. 214/215, pp. 537–541.

  38. Kazuhiro Ohkawa, Takeshi Karasawa, and Tsuneo Mitsuyu, Characteristics of p-Type ZnSe Layers Grown by Molecular Beam Epitaxy with Radical Doping, Jpn. J. Appl. Phys., 1991, vol. 30, pp. L152–L155.

    Google Scholar 

  39. Nishizawa, J., Itoh, K., Okuno, Y., and Sakurai, F., Blue Light Emission ZnSe p-nJunctions, J. Appl. Phys., 1985, vol. 57, pp. 2210–2216.

    Article  Google Scholar 

  40. Park, R.M., Mar, H.A., and Salansky, N.M., Photoluminescence Properties of Nitrogen-Doped ZnSe Grown by Molecular Beam Epitaxy, J. Appl. Phys., 1985, vol. 58, pp. 1047–1049.

    Article  Google Scholar 

  41. Matsumoto, S., Tosaka, H., Yoshida, T., et al., Nitrogen Doping of ZnSe and ZnCdSe with the Assistance of Thermal Energy and Photon Energy, Jpn. J. Appl. Phys., 1993, vol. 33, pp. 731–735.

    Google Scholar 

  42. Park, R.M., Troffer, M.B., Rouleau, C.M., et al., p-Type ZnSe by Nitrogen Atom Beam Doping during Molecular Beam Epitaxy Growth, Appl. Phys. Lett.,1990, vol. 57, pp. 2127–2129.

    Article  Google Scholar 

  43. Kimura, K., Miwa, S., Jin, C.G., et al., Atomic Nitrogen Doping in p-ZnSe with High Activation Ratio Using a High-Power Plasma Source, J. Cryst. Growth, 1998, vol. 184/185, pp. 411–414.

    Article  Google Scholar 

  44. Ogata, K.-I., Kawaguchi, D., Nishiyama, N.,et al., Effects of Annealing Atmosphere and Temperature on Acceptor Activation in ZnSe:N Grown by Photoassisted MOVPE, J. Cryst. Growth, 1996, vol. 159, pp. 312–316.

    Article  Google Scholar 

  45. Ahmed, M.U., Prete, P., Irvine, S.J., et al., Mechanism for Photo-Assisted MOVPE Nitrogen Doping of ZnSe, J. Cryst. Growth, 1998, vol. 184/185, pp. 429–434.

    Article  Google Scholar 

  46. Gunshor, R.L., Han, J., Hua, G.C., et al., Growth Issues for Blue-Green Laser Diodes, J. Cryst. Growth,1996, vol. 159, pp. 1–10.

    Article  Google Scholar 

  47. Ishibashi, A., II-VI Blue-Green Light Emitters, J. Cryst. Growth, 1996, vol. 159, pp. 555–565.

    Article  Google Scholar 

  48. Hommel, D., Behr, T., Kurtz, E., et al., On the Growth and Doping of Blue-Green Emitting ZnSe Laser Diodes, J. Cryst. Growth, 1996, vol. 159, pp. 566–572.

    Article  Google Scholar 

  49. Toda, A., Nakamura, F., Yanashima, K., and Ishibashi, A., Blue-Green Laser Diode Grown by Photo-Assisted MOCVD, J. Cryst. Growth,1997, vol. 170, pp. 461–466.

    Article  Google Scholar 

  50. Ogata, K.-I., Kawaguchi, D., Nishiyama, N., et al., Fabrication of ZnSe-Based Laser Diode Structures by Photoassisted MOVPE, J. Cryst. Growth, 1998, vol. 184/185, pp. 554–557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgobiani, A.N., Kotlyarevsky, M.B. & Rogozin, I.V. Methods of High-Energy Chemistry in the Technology of Wide-Gap Chalcogenide Semiconductors. Inorganic Materials 40 (Suppl 1), S1–S18 (2004). https://doi.org/10.1023/B:INMA.0000036325.88593.d7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000036325.88593.d7

Keywords

Navigation