Skip to main content
Log in

Conductivity of Proton Electrolytes Based on Cesium Hydrogen Sulfate Phosphate

  • Published:
Inorganic Materials Aims and scope

Abstract

The conductivity and thermal behavior of cesium hydrogen sulfate phosphate are studied. New composite proton electrolytes (1 – x)Cs3(HSO4)2(H2PO4)–xSiO2 with a high conductivity in the range 60–200°C are prepared, and their transport properties are studied in a broad composition range (x = 0.3–0.95). Their conductivity exceeds that of CsHSO4–SiO2 composites and depends strongly on composition: it reaches a maximum at x = 0.7 (22 vol % SiO2) and drops at higher silica contents on account of percolation disruption. It is shown by differential scanning calorimetry and x-ray diffraction analysis that the introduction of fine-particle silica stabilizes the high-conductivity, disordered state of the mixed salt on the surface of the silica particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Baranov, A.I., Shuvalov, L.A., and Shchagina, N.M., Superionic Conductivity and Phase Transitions in CsHSO 4 and CsHSeO 4 Crystals, Pis'ma Zh.Eksp.Teor.Fiz., 1982, vol. 36, no. 11, pp. 381–384.

    Google Scholar 

  2. Pawłowski, A. and Pawlaczyk, Cz., Electrical Conduc-tivity and Capacity Studies of Rb 3 H(SeO 4 ) 2 Single Crystal near the High Temperature Phase Transition, Ferro-electrics, 1988, vol. 81, pp. 201–206.

    Google Scholar 

  3. Baranov, A.I., Yakushkin, E.D., Jones, D.J., and Roziere, J., Aging and Non-Ergodicity in Superprotonic Water Non-Stoichiometric Phases of M z H y (AO 4 )(z +y)/2 x H 2 O Crystals, Solid State Ionics, 1999, vol. 125, pp. 99–106.

    Google Scholar 

  4. Haile, S.M., Lentz, G., Kreuer, K.D., and Maier, J., Superprotonic Conductivity in Cs 3 (HSO 4 ) 2 (H 2 PO 4 ), Solid State Ionics, 1995, vol. 77, pp. 128–134.

    Google Scholar 

  5. Haile, S.M., Calkins, P.M., and Boysen, D., Superpro-tonic Conductivity in β-Cs 3 (HSO 4 )2 (H x (P,S)O 4 ), Solid State Ionics, 1997, vol. 97, pp. 145–151.

    Google Scholar 

  6. Chisholm, C.R.I. and Haile, S.M., Superprotonic Behavior of Cs 2 (HSO 4 )(H 2 PO 4 )—a New Solid Acid in the CsHSO 4 –CsH 2 PO 4 System, Solid State Ionics, 2000, vol. 136/137, pp. 229–241.

    Google Scholar 

  7. Ponomareva, V.G., Uvarov, N.F., Lavrova, G.V., and Hairetdinov, E.F., Composite Protonic Solid Electrolytes in the CsHSO 4 –SiO 2 System, Solid State Ionics, 1996, vol. 90, pp. 161–166.

    Google Scholar 

  8. Ponomareva, V.G., Lavrova, G.V., and Uvarov, N.F., Composite Protonic Solid Electrolytes Based on MeHSO 4 (Me = Cs, Rb, K), Proc.3rd Int.Symp.on Ionic and Mixed Conducting Ceramics, Ramanarayanan, T.A. et al., Eds., Paris, 1997, vol. 3, pp. 44–48.

  9. Ponomareva, V.G. and Lavrova, G.V., Influence of Dis-persed TiO 2 on Protonic Conductivity of CsHSO 4, Solid State Ionics, 1998, vol. 106, pp. 137–141.

    Google Scholar 

  10. Friezel, M., Lunden, A., and Baranovski, B., Bulk Phase Transitions Sulphate Initiated by Surface Processes, Grinding, or External Pressure, Solid State Ionics, 1989, vol. 35, pp. 91–98.

    Google Scholar 

  11. Ponomareva, V.G., Lavrova, G.V., and Simonova, L.G., The Influence of Heterogeneous Dopant Porous Structure on the Properties of Protonic Solid Electrolyte in the CsHSO 4 –SiO 2 System, Solid State Ionics, 1999, vol. 118, pp. 317–323.

    Google Scholar 

  12. Ponomareva, V.G. and Lavrova, G.V., The Investigation of Disordered Phases in Nanocomposite Proton Electrolytes Based on MeHSO 4 (Me = Rb, Cs, K), Solid State Ionics, 2001, vol. 145, pp. 197–204.

    Google Scholar 

  13. Ponomareva, V.G., Lavrova, G.V., and Simonova, L.G., Properties of Cesium Hydrogen Sulfate Dispersed in Small Pores of an Inert Carrier, Neorg.Mater., 1998, vol. 34, no. 12, pp. 1499–1502 [Inorg.Mater. (Engl. Transl.), vol. 34, no. 12, pp. 1266–1269].

    Google Scholar 

  14. Baranov, A.I., Sinitsyn, V.V., Ponyatovskii, E.G., and Shuvalov, L.A., Phase Transitions in Surface Layers of Hydrogen Sulfates, Pis'ma Zh.Eksp.Teor.Fiz., 1986, vol. 44, no. 4, pp. 186–189.

    Google Scholar 

  15. Maier, J., Ionic Conduction in Space Charge Region, Prog.Solid State Chem., 1995, vol. 23, pp. 171–263.

    Google Scholar 

  16. Uvarov, N.F. and Boldyrev, V.V., Size-Related Phenom-ena in the Chemistry of Heterogeneous Systems, Usp.Khim., 2001, vol. 70, no. 4, pp. 265–284.

    Google Scholar 

  17. Dudney, N.J., Enhanced Ionic Conductivity in Com-posite Solid Electrolytes, Solid State Ionics, 1988, vols. 28–30, pp. 1065–1072.

    Google Scholar 

  18. Colomban, Ph. and Novak, A., Chemistry of Solid State Materials: 2. Proton Conductors, Anhydrous Materials: Oxonium Perchlorate, Acid Phosphates, Arsenates, Sul-phates, and Selenates, Colomban, Ph., Ed., Cambridge, 1992, chapter 11, pp. 165–183.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomareva, V.G., Shutova, E.S. & Matvienko, A.A. Conductivity of Proton Electrolytes Based on Cesium Hydrogen Sulfate Phosphate. Inorganic Materials 40, 721–728 (2004). https://doi.org/10.1023/B:INMA.0000034771.79865.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000034771.79865.da

Keywords

Navigation