Skip to main content
Log in

Mechanical Alloying of Immiscible Elements in the Fe–Mg System

  • Published:
Inorganic Materials Aims and scope

Abstract

Mechanical alloying of immiscible elements in the Fe–Mg system (≤32 at % Mg) is achieved by grinding in a planetary ball mill. The process is studied by x-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The results attest to the formation of supersaturated solid solutions of Mg in α-Fe. The highest Mg content of the solid solutions is 5–7 at %. Mössbauer results are used to evaluate the changes in the hyperfine magnetic field at Fe nuclei associated with the presence of one Mg atom among the nearest neighbors and next nearest neighbors of Fe in the solid solutions: ΔH 1 = –1760 kA/m and ΔH 2 = –800 kA/m, respectively. Increasing the Mg content of the starting mixture reduces Mg solubility in Fe. Thermodynamic analysis indicates that the driving force for the formation of solid solutions may be associated with the excess energy of coherent interfaces in the Fe–Mg nanocomposite resulting from mechanical alloying. The elastic strain arising from the lattice mismatch between Fe and Mg facilitates incorporation of Mg into α-Fe. Above a certain Mg content, no coherent interfaces are formed, and the thermodynamic driving force for Mg dissolution disappears. As a result, the system becomes immiscible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Suryanarayana, C., Mechanical Alloying and Milling, Prog.Mater.Sci., 2001, vol. 46, pp. 1–184.

    Google Scholar 

  2. Khodakov, G.S., Fizika izmel'cheniya (Physics of Milling), Moscow: Nauka, 1972.

    Google Scholar 

  3. Kuznetsov, V.A., Lipson, A.G., and Sakov, D.M., On the Limit of Crystal Comminution, Zh.Fiz.Khim., 1993, vol. 67, no. 4, pp. 782–786.

    Google Scholar 

  4. Dorofeev, G.A., Ul'yanov, A.L., Konygin, G.N., and Elsukov, E.P., Comparative Analysis of the Mechanisms, Thermodynamics, and Kinetics of Mechanical Alloying in the Systems Fe(68)M(32) (M = Si, Sn), Fiz.Met.Metalloved., 2001, vol. 91, no. 1, pp. 47–55.

    Google Scholar 

  5. Elsukov, E.P., Dorofeev, G.A., Fomin, V.M., et al., Mechanically Alloyed Fe(100 – x)C(x) (x = 5–25) Powders: I. Structure, Phase Composition, and Thermal Stability, Fiz.Met.Metalloved., 2002, vol. 94, no. 4, pp. 35–364.

    Google Scholar 

  6. Elsukov, E.P., Dorofeev, G.A., Ul'yanov, A.L., et al., Solid-State Reactions in the Fe(68)Ge(32) System during Mechanical Alloying, Fiz.Met.Metalloved., 2003, vol. 95, no. 2, pp. 164–169.

    Google Scholar 

  7. Yavari, A.R., Desré, P.J., and Benameur, T., Mechanically Driven Alloying of Immiscible Elements, Phys.Rev.Lett., 1992, vol. 58, no. 14, pp. 2235–2238.

    Google Scholar 

  8. Badmos, A.K. and Bhadeshia, H.K.D.H., The Evolution of Solutions: A Thermodynamic Analysis of Mechanical Alloying, Metall.Mater.Trans.A., 1997, vol. 28, pp. 2189–2194.

    Google Scholar 

  9. Dorofeev, G.A., Yelsukov, E.P., Ulyanov, A.L., and Konygin, G.N., Thermodynamic Simulation of Mechanically Alloyed Solid Solution Formation in Fe–Sn System, Mater.Sci.Forum, 2000, vols. 343–346, pp. 58–590.

    Google Scholar 

  10. Gente, C., Oehring, M., and Bormann, R., Formation of Thermodynamically Unstable Solid Solutions in the Cu– Co System by Mechanical Alloying, Phys.Rev.B: Condens.Matter, 1993, vol. 48, no. 18, pp. 13244–13252.

    Google Scholar 

  11. Bai, H.Y., Michaelsen, C., Gente, C., and Bormann, R., Amorphization by Mechanical Alloying in Metallic System with Positive Gibbs Energy of Formation, Phys.Rev.B: Condens.Matter, 2002, vol. 63, p. 064202-1-10.

    Google Scholar 

  12. Ishida, Y., Ichinose, H., Kizuka, T., and Suenada, K., High-Resolution Microscopy of Interfaces in Nanocrystalline Materials, Nanostruct.Mater., 1995, vol. 6, pp. 115–124.

    Google Scholar 

  13. Ivchenko, V.A., Uimin, M.A., Yermakov, A.Ye., and Korobeinikov, A.Yu., Atomic Structure and Magnetic Properties of Cu 80 Co20 Nanocrystalline Compound Produced by Mechanical Alloying, Surf.Sci., 1999, vol. 440, pp. 420–428.

    Google Scholar 

  14. Gerasimov, K.B., Mytnichenko, S.V., Pavlov, S.V., et al., Structural Study of Mechanically Alloyed Cu30 Cr70 by Anomalous X-ray Diffraction and EXAFS-Spectros-copy, J.Alloys Compd., 1997, vol. 252, pp. 179–183.

    Google Scholar 

  15. Tie, L., Yu-zhi, L., and Yu-beng, Z., Hyperfine Magnetic Field in Mechanically Alloyed Fe–Cu, Phys.Rev.B: Condens.Matter, 1995, vol. 52, no. 2, pp. 1120–1122.

    Google Scholar 

  16. Huang, J.Y., Jiang, J.Z., Yasuda, H., and Mori, H., Kinetic Process of Mechanical Alloying in Fe 50 Cu 50, Phys.Rev.B: Condens.Matter, 1998, vol. 58, no. 18, pp. R11817–R11820.

    Google Scholar 

  17. Kaloshkin, S.D., Tomilin, I.A., Andrianov, G.A., et al., Phase Transformations and Hyperfine Interactions in Mechanically Alloyed Fe–Cu Solid Solutions, Mater.Sci.Forum, 1997, vols. 235–238, pp. 565–570.

    Google Scholar 

  18. Ma, E., He, J.-H., and Schilling, P.J., Mechanical Alloying of Immiscible Elements: Ag–Fe Contrasted with Cu– Fe, Phys.Rev.B: Condens.Matter, 1997, vol. 55, no. 9, pp. 5542–5545.

    Google Scholar 

  19. Klassen, T., Herr, U., and Averback, R.S., Ball Milling of Systems with Positive Heat of Mixing: Effect of Temperature in Ag–Cu, Acta Mater., 1997, vol. 45, no. 7, pp. 2921–2930.

    Google Scholar 

  20. Ivchenko, V.A., Wanderka, N., Czubayko, U., et al., Mechanically Alloyed Nanocrystalline Cu 80 Co 20 Investigated by AP/FIM and 3DAP, Mater.Sci.Forum, 2000, vols. 343–346, pp. 709–714.

    Google Scholar 

  21. Kubaschewski, O., Iron—Binary Phase Diagrams, Berlin: Springer, 1982. Translated under the title Diagrammy sostoyaniya dvoinykh sistem na osnove zheleza, Moscow: Metallurgiya, 1985.

    Google Scholar 

  22. De Boer, F.R., Boom, R., Mattens, W.C.M., et al., Cohesion in Metals, vol. 1: Transition Metal Alloys, Amsterdam: Elsevier, 1988.

    Google Scholar 

  23. Hightiwer, A., Fultz, B., and Bowman, R.C., Mechanical Alloying of Fe and Mg, J.Alloys Compd., 1997, vol. 252, pp. 238–244.

    Google Scholar 

  24. Voronina, E.V., Ershov, N.V., Ageev, A.L., et al., Regular Algorithm for the Solution of the Inverse Problem in Mössbauer Spectroscopy, Phys.Status Solidi B, 1990, vol. 160, pp. 625–634.

    Google Scholar 

  25. Reuther, H., Betzl, M., Matz, W., and Richter, E., Alloying by High Ion Implantation of Iron into Magnesium and Aluminium, Hyperfine Interact., 1998, vol. 113, pp. 391–401.

    Google Scholar 

  26. Hirth, J.P. and Lothe, J., Theory of Dislocations, New York: McGraw-Hill, 1968. Translated under the title Teoriya dislokatsii, Moscow: Atomizdat, 1972.

    Google Scholar 

  27. Hirth, J.P. and Feng, X., Critical Layer Thickness for Misfit Dislocation Stability in Multilayer Structures, J.Appl.Phys., 1990, vol. 67, no. 7, pp. 3343–3349.

    Google Scholar 

  28. MacPherson, G., Beanland, R., and Goodhew, P.J., On the Development of Misfit Dislocation Distributions in Strained Epitaxial Layer Interfaces, Scr.Metall.Mater., 1995, vol. 33, pp. 123–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorofeev, G.A., Elsukov, E.P. & Ul'yanov, A.L. Mechanical Alloying of Immiscible Elements in the Fe–Mg System. Inorganic Materials 40, 690–699 (2004). https://doi.org/10.1023/B:INMA.0000034767.14276.a9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000034767.14276.a9

Keywords

Navigation