Skip to main content
Log in

Thermodynamic Approach to Optimization of SrTiO3 Chemical Vapor Deposition from Volatile Metalorganic Precursors

  • Published:
Inorganic Materials Aims and scope

Abstract

Thermodynamic analysis is used to examine the possibility of producing SrTiO3 films in two precursor systems containing different volatile Ti compounds: TiO(dpm)2–Sr(dpm)2–N2O–Ar (I) and Ti(OPri)2(dpm)2–Sr(dpm)2–N2O–Ar (II). The results demonstrate that, at an initial Ti : Sr atomic ratio of 1 : 1 and a ratio of flow rates \(f_{{\text{N}}_{\text{2}} {\text{O}}} \)/f Ar = 1, system I contains no region of single-phase SrTiO3 deposition. Raising the N2O concentration in the vapor phase makes it possible to deposit SrTiO3. System II contains a broad temperature range of SrTiO3 deposition (400–1300 K) over the entire pressure range examined, p total = 1–100 Pa. These conclusions are verified by depositing films in systems I and II (in particular, in system I in the presence of N2O activated in an rf discharge). The films grown in system I are found to consist of crystalline SrTiO3 and an amorphous phase containing residual organics, in particular in the form of CH x groups with x = 1–3. The films produced in system II consist of nanocrystalline SrTiO3. In this system, the equilibrium phase SrTiO3 is formed on the substrate surface via solid-state reaction between TiO2 and SrO intermediates. The rf activation of N2O makes it possible to grow crystalline SrTiO3 at much lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hwang, C.S., Park, S.O., Kang, C.S., et al., Deposition and Electrical Characterization of Very Thin SrTiO3 Films for Ultra Large Scale Integrated Dynamic Random Access Memory Application, Jpn. J. Appl. Phys., Part 1, 1995, vol. 34, no. 9, pp. 5178-5183.

    Google Scholar 

  2. Ichinose, N. and Ogiwara, Y.T., Preparation and Rapid Thermal Annealing Effect of (Ba,Sr)TiO3 Thin Films, Jpn. J. Appl. Phys., Part 1, 1995, vol. 34, no. 9, pp. 5198-5201.

    Google Scholar 

  3. Yamamishi, S., Sakuma, T., Takemura, K., and Miyasaka, Y., SrTiO3 Thin Film Preparation by Ion Beam Sputtering and Its Dielectric Properties, Jpn. J. Appl. Phys., Part 1, 1991, vol. 30, no. 9, pp. 2193-2196.

    Google Scholar 

  4. Ando, F., Shimizu, H., Kobayashi, I., and Okada, M., Synthesis of Ti(dpm)2(OCH3)2 and Evaluation of the TiO2 Films Prepared by Metal-Organic Chemical Vapour Deposition, Jpn. J. Appl. Phys., Part 1, 1997, vol. 36, no. 9, pp. 5820-5824.

    Google Scholar 

  5. Kang, Ch.S., Hwang, C.S., Cho, H.J., et al., Preparation and Electrical Properties of SrTiO3 Thin Films Deposited by Liquid Source Metal-Organic Chemical Vapor Deposition MOCVD, Jpn. J. Appl. Phys., Part 1, 1996, vol. 35, no. 9, pp. 4890-4895.

    Google Scholar 

  6. Kim, D.O., Choi, R.J., Nahm, K.S., and Hahn, Y.B., Growth Characteristics and Deposition Mechanism of SrTiO3 Thin Films by Plasma Enhanced Metalorganic Chemical Vapor Deposition, J. Vac. Sci. Technol., A, 2000, vol. 18, no. 2, pp. 361-366.

    Google Scholar 

  7. Lee, J.H., Cho, Y.J., Min, Y.S., and Kim, D., Plasma Enhanced Atomic Layer Deposition of SrTiO3 Thin Films with Sr(tmhd)2 and Ti(i-OPr)4, J. Vac. Sci. Technol., A, 2002, vol. 20, no. 5, pp. 1828-1830.

    Google Scholar 

  8. Golubenko, A.N., Kosinova, M.L., Titov, V.A., et al., On Thermodynamic Equilibria of Solid BN and Gas Phases in the B-N-H-Cl-He System, Thin Solid Films, 1997, vol. 293, pp. 11-16.

    Google Scholar 

  9. Salinas, E.R., Pisch, A., Chatillon, C., and Bernard, C., Thermodynamic Optimization of OMCVD Deposition of SrTiO3, Proc. Int. Symp. Chemical Vapor Deposition XVI and EUROCVD 14, 2003, vol. 2003-08, no. 2086, pp. 243-248.

    Google Scholar 

  10. Kaufman, H. and Metin, S., Symmetry Breaking in Nitrogen Doped Amorphous Carbon: Infrared Observation of the Raman-Active G and D Bands, Phys. Rev. B: Condens. Matter, 1989, vol. 39, no. 18, pp. 13053-13060.

    Google Scholar 

  11. Ryu, H.-K., Shik, H., Sung, C., and Sang, H.M., Thermal Decomposition Mechanism of Ti(O-iPr)2(dpm)2, J. Electrochem. Soc., 1999, vol. 146, no. 3, pp. 1117-1121.

    Google Scholar 

  12. Ryu, H.-K., Shik, H.J., Sung, C., et al., Thermal Decomposition Mechanism of Sr(dpm)2, J. Electrochem. Soc., 2000, vol. 147, no. 3, pp. 1130-1135.

    Google Scholar 

  13. Lin, Z., Akkerman, Z., Yang, B.X., and Smith, F.W., Optical Properties and Microstructure of CVD Diamond Films, Diamond Relat. Mater., 1997, vol. 6, pp. 153-158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubenko, A.N., Yakovkina, L.V., Smirnova, T.P. et al. Thermodynamic Approach to Optimization of SrTiO3 Chemical Vapor Deposition from Volatile Metalorganic Precursors. Inorganic Materials 40, 516–521 (2004). https://doi.org/10.1023/B:INMA.0000027599.14467.52

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000027599.14467.52

Keywords

Navigation