Skip to main content
Log in

Modeling the Vibrational Spectrum of Vacancy-Containing α-Fe Crystals

  • Published:
Inorganic Materials Aims and scope

Abstract

The local atomic structure and vibrational spectrum of vacancy-containing α-Fe crystals are calculated using a many-particle interatomic potential. The phonon spectrum is evaluated by a recursion method, and force-constant matrices are calculated using sparse matrix technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Land, P.L. and Goodman, B., Localized Vibrations at Vacant Sites in Cubic Crystals, J. Phys. Chem. Solids, 1967, vol. 28, no. 2, pp. 113–136.

    Google Scholar 

  2. Yamamoto, R., Haga, K., and Doyama, M., Lattice Vibrations around a Vacancy in Cubic Crystals, J. Phys. Soc. Jpn., 1980, vol. 48, no. 1, pp. 341–342.

    Google Scholar 

  3. Masuda, K., Lattice Vibrations around a Vacancy in b.c.c. Transition Metals, Phys. Status Solidi B, 1981, vol. 105, no. 1, pp. 107–113.

    Google Scholar 

  4. Pohlong, S.S. and Ram, P.N., Vibrational Density of First and Second Neighbors of Vacancies in bcc Metals, J. Phys.: Condens. Matter, 1998, vol. 10, no. 48, pp. 10901–10908.

    Google Scholar 

  5. Finnis, M.W. and Sinclair, J.E., A Simple Empirical N-Body Potential for Transition Metals, Philos. Mag. A, 1984, vol. 50, no. 1, pp. 45–55.

    Google Scholar 

  6. Harder, J.M. and Bacon, D.J., Point-Defect and Stacking-Fault Properties in Body-Centered-Cubic Metals with n-Body Interatomic Potentials, Philos. Mag. A, 1986, vol. 54, no. 5, pp. 651–661.

    Google Scholar 

  7. Harder, J.M. and Bacon, D.J., The Structure of Small Interstitial Clusters in b.c.c. Metals Modeled with n-Body Potentials, Philos. Mag. A, 1988, vol. 58, no. 1, pp. 165–178.

    Google Scholar 

  8. Simonelli, G., Pasianot, R., and Savino, E.J., Point-Defect Computer Simulation Including Angular Forces in b.c.c. Iron, Phys. Rev. B: Condens. Matter, 1994, vol. 50, no. 2, pp. 727–738.

    Google Scholar 

  9. Shantasiriwan, S. and Milstein, F., Embedded-Atom Models of 12 Cubic Metals Incorporating Second and Third Order Elastic-Moduli Data, Phys. Rev. B: Condens. Matter, 1998, vol. 58, no. 10, pp. 5996–6005.

    Google Scholar 

  10. Rayne, J.A. and Chandrasekhar, B.S., Elastic Constants of Iron from 4.2 to 300 K, Phys. Rev., 1961, vol. 122, no. 6, pp. 1714–1716.

    Google Scholar 

  11. Daw, M.S. and Hatcher, R.D., Application of the Embedded Atom Method to Phonons in Transition Metals, Solid State Commun., 1985, vol. 56, no. 8, pp. 697–699.

    Google Scholar 

  12. Ningsheng, L., Wenlan, X., and Shen, S.C., Embedded Atom Method for the Phonon Frequencies of Copper in Off-Symmetry Directions, Solid State Commun., 1989, vol. 69, no. 2, pp. 155–157.

    Google Scholar 

  13. Bergsma, J., Van Dijk, C., and Tocchetti, D., Normal Vibrations in a-Iron, Phys. Lett. A, 1967, vol. 24, no. 5, pp. 270–272.

    Google Scholar 

  14. Herscovici, C. and Fibish, M., Phonon Spectra Calculations by Recursion Method: I. Diatomic Crystals, J. Phys. C: Solid State Phys., 1980, vol. 13, no. 9, pp. 1635–1647.

    Google Scholar 

  15. Haydock, R., Heine, V., and Kelly, M.J., Electronic Structure Based on the Local Atomic Environment for Tight-Binding Bands, J. Phys. C: Solid State Phys., 1972, vol. 5, no. 20, pp. 2845–2858.

    Google Scholar 

  16. Mazurenko, V.G. and Kislov, A.N., Modeling the Lattice Dynamics of CaF2 Crystals Containing Intrinsic Defects, Fiz. Tverd. Tela (S.-Peterburg), 1992, vol. 34, no. 11, pp. 3403–3407.

    Google Scholar 

  17. Allan, G., Analytic Integration of the Continued Fraction Expansion of a Density of States, Solid State Commun., 1984, vol. 50, no. 5, pp. 401–404.

    Google Scholar 

  18. Turchi, P., Ducastelle, F., and Treglia, G., Band Gaps and Asymptotic Behavior of Continued Fraction Coefficients, J. Phys. C: Solid State Phys., 1982, vol. 15, no. 13, pp. 2891–2924.

    Google Scholar 

  19. Pissanetzky, S., Sparse Matrix Technology, London: Academic, 1984. Translated under the title Tekhnologiya razrezhennykh matrits, Moscow: Mir, 1988.

  20. Norgett, M.J. and Fletcher, R., Fast Matrix Method for Calculating the Relaxation about Defects in Crystals, J. Phys. C: Solid State Phys., 1970, vol. 3, no. 11, pp. L190–L192.

    Google Scholar 

  21. Horak, J.A., Blewitt, T.H., and Fine, M.E., Effect of Neutron Irradiation at 4.5 K on Guinier-Preston Zone Formation in Aluminum-Zone Alloys, J. Appl. Phys., 1968, vol. 39, no. 1, pp. 326–337.

    Google Scholar 

  22. De Schepper, L., Segers, D., Dorikens-Vanpraet, L., et al., Positron Annihilation on Pure and Carbon-Doped Alpha-Iron in Thermal Equilibrium, Phys. Rev. B: Condens. Matter, 1983, vol. 27, no. 9, pp. 5257–5269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kislov, A.N., Mazurenko, V.G. Modeling the Vibrational Spectrum of Vacancy-Containing α-Fe Crystals. Inorganic Materials 39, 1280–1283 (2003). https://doi.org/10.1023/B:INMA.0000008913.19266.2a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000008913.19266.2a

Keywords

Navigation