Skip to main content
Log in

Structural Perfection of Four-Layer Ga x In1 – x As y P1 – y Laser Heterostructures

  • Published:
Inorganic Materials Aims and scope

Abstract

The structural perfection and coherent growth conditions of epitaxial layers in four-layer Ga x In1 – x As y P1 – y heterostructures on InP(001) substrates were studied by x-ray diffraction and topography. The composition of the active layer corresponded to a peak photoluminescence wavelength of 1.34 μm. The coherent growth region was delineated, and the critical thickness of epitaxial layers was determined as a function of the interfacial lattice mismatch. The critical thickness determined experimentally exceeds the calculated value. It is shown that heterostructures up to 9 μm in layer thickness, free of interfacial dislocations can be grown in a broad range of elastic strains in adjacent layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fancey, S.J., Buller, G.S., Massa, J.S., et al., Time Resolved Photoluminescence Study of Strained-Layer InGaAsP/InP Heterostructures, J. Cryst. Growth, 1998, vol. 183, no. 1/2, pp. 269–273.

    Google Scholar 

  2. Porte, L., Krapf, P., Robach, Y., and Gendry, M., Influence Compressively and Tensilely Strained In1 - x GaxAs Layers Epitaxially Grown on InP, J. Cryst. Growth, 1997, vol. 181, no. 4, pp. 337–342.

    Google Scholar 

  3. Mullan, C.A., Thompson, D.A., and Weatherly, G.C., Compositional Variations in InGaAsP Films Grown on Patterned Substrates, J. Cryst. Growth, 1997, vol. 182, no. 3/4, pp. 266–274.

    Google Scholar 

  4. Wolfram, P., Steimetz, E., Ebert, W., et al., Growth of InGaAsP/InP-Laser Structures Monitored by Using RAS Techniques, J. Cryst. Growth, 2003, vol. 248, pp. 240–243.

    Google Scholar 

  5. Chin, A., Temkin, H., Mahajan, S., et al., Evaluation of Defects in InP and InGaAsP by Transmission Cathodoluminescence, J. Appl. Phys., 1979, vol. 50, no. 9, pp. 5707–5709.

    Google Scholar 

  6. Nakajima, K., Yamasaki, S., Komiya, S., and Akita, K., Misfit Dislocation-Free InGaAsP/InP Heterostructure Wafers Grown by Liquid Phase Epitaxy, J. Appl. Phys., 1981, vol. 52, no. 7, pp. 4575–4582.

    Google Scholar 

  7. Ishida, K., Matsumoto, Y., and Taguchi, K., Lattice Defects in LPE InP-InGaAsP-InGaAs Structure Epitaxial Layers on InP Substrates, Phys. Status Solidi A, 1982, vol. 70, no. 1, pp. 277–286.

    Google Scholar 

  8. Yamazaki, S., Kishi, Y., Nakajima, K., et al., Misfit Dislocation in InP/InGaAsP/InP Double-Heterostructure Wafer Grown by Liquid Phase Epitaxy, J. Appl. Phys., 1982, vol. 53, no. 7, pp. 4761–4766.

    Google Scholar 

  9. Yamaguchi, A., Komiaya, S., Ueda, O., et al., Asymmetric Character of Misfit Dislocations in LPE DH InGaAsP/InP, Int. Symp. on Gallium Arsenide and Related Compounds, Oiso, 1981, pp. 161–166.

  10. Yamazaki, S., Nakajima, K., Komiya, S., et al., Liquid Phase Epitaxial Growth of InP/InGaAsP/InP Double-Heterostructure Wafers Free of Misfit Dislocation, Appl. Phys. Lett., 1983, vol. 43, no. 1, pp. 82–84.

    Google Scholar 

  11. Vdovin, V.I. and Govorkov, A.V., Electron-Microscopic Study of Low-Misfit-Dislocation InGaAsP/InP Epitaxial Structures, Izv. Akad. Nauk SSSR, Ser. Fiz., 1983, vol. 47, no. 6, pp. 1205–1208.

    Google Scholar 

  12. Vdovin, V.I., Zaitsev, A.A., Mal'kova, N.V., et al., Dislocation Structure Development in In-Ga-As-P Solid-Solution Epilayers, Kristallografiya, 1985, vol. 30, no. 2, pp. 353–359.

    Google Scholar 

  13. Komiya, S., Yamazaki, S., Kishi, Y., et al., Generation Mechanism of Misfit Dislocation in InGaAsP/InP DH Structure Grown by LPE, J. Cryst. Growth, 1983, vol. 61, no. 4, pp. 362–368.

    Google Scholar 

  14. Vdovin, V.I., Krasilnikov, V.S., and Yugova, T.G., The Influence of Nature and Composition of III-V Quaternary Solid Solution upon the Dislocation Structure Formation in Epitaxial Heterocompositions, Defect Control Semicond., 1990, vol. 2, pp. 1107–1109.

    Google Scholar 

  15. Kuznetsov, G.F. and Mal'kova, N.V., Dislocation Generation during Growth of 1.5–µm Emitting GaxIn1-x AsyP1 ± y /(001)InP Double Heterostructures, Elektron. Tekh., Ser. 6: Mater., 1986, no. 2 (213), pp. 30–39.

    Google Scholar 

  16. Avdeeva, V.V., Dolginov, L.M., Krasilnikov, V.S., et al., Defect Formation in Multilayer GaxIn1 -xAsyP1 - y Heterolaser Structures, Kristallografiya, 1988, vol. 33, no. 3, pp. 712–720.

    Google Scholar 

  17. Genkin, V.M. and Krasilnikov, V.S., X-ray Determination of the Dopant Content, Linear Mismatch, and Defect Dilation in Epitaxial Films, Appar. Metody Rentgenovskogo Anal., 1978, no. 20, pp. 107–112.

    Google Scholar 

  18. Krasilnikov, V.S. and Gudkova, A.D., X-ray Topographic Analysis of Multilayer Heterostructures, Konferentsiya po elektronnym materialam (Conf. on Electronic Materials), Novosibirsk, 1992, p. 132.

  19. Krasilnikov, V.S., Bublik, V.T., Lebedev, S.N., et al., X-ray Depth Profiling of the Defect Structure of Epitaxial Layers, Elektron. Tekh., Ser. 8: Upr. Kach., Stand., Metrol., Ispyt., 1985, no. 2 (113), pp. 26–31.

    Google Scholar 

  20. Fransosi, P., Salviati, G., Genova, F., et al., Misfit Dislocations in InGaAs/InP MBE Heterostructures, J. Cryst. Growth, 1986, vol. 75, no. 3, pp. 521–534.

    Google Scholar 

  21. Mil'vidskii, M.G. and Dolginov, L.M., Quaternary Solid Solutions of Compound Semiconductors, Rost Krist., 1981, vol. 14, pp. 43–52.

    Google Scholar 

  22. Mil'vidskii, M.G. and Osvenskii, V.B., General Trends of Defect Formation in Optoelectronic Heteroepitaxial Structures, Kristallografiya, 1977, vol. 22, no. 2, pp. 431–447.

    Google Scholar 

  23. Tkhorik, Yu.A. and Khazan, L.S., Plasticheskaya deformatsiya i dislokatsii nesootvetstviya v geteroepitaksial'nykh sistemakh (Plastic Strain and Misfit Dislocations in Heteroepitaxial Systems), Kiev: Naukova Dumka, 1983, p. 22.

    Google Scholar 

  24. Krasilnikov, V.S., Yugova, T.G., Bublik, V.T., et al., Compositional Effects on the Coherent Growth of GaxIn1-x AsyP1 - y Epilayers, Kristallografiya, 1988, vol. 33, no. 6, pp. 1469–1477.

    Google Scholar 

  25. Vdovin, V.I., Krasilnikov, V.S., and Yugova, T.G., Effects of the Nature and Composition of Quaternary Solid Solutions between III-V Compounds on the Development of the Dislocation System in Epitaxial Heterostructures, Kristallografiya, 1991, vol. 36, no. 3, pp. 738–749.

    Google Scholar 

  26. Matthews, J.W. and Blakesly, A.E., Defects in Epitaxial Multilayers, J. Cryst. Growth, 1974, vol. 27, no. 1, pp. 118–125.

    Google Scholar 

  27. Brantley, W.A., Calculated Elastic Constants for Stress Problem Associated with Semiconductor Devices, J. Appl. Phys., 1973, vol. 27, no. 1, pp. 534–535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasilnikov, V.S. Structural Perfection of Four-Layer Ga x In1 – x As y P1 – y Laser Heterostructures. Inorganic Materials 39, 1233–1238 (2003). https://doi.org/10.1023/B:INMA.0000008906.64801.b5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000008906.64801.b5

Keywords

Navigation