Skip to main content
Log in

Mixed Plane Problems in Linearized Solid Mechanics: Exact Solutions

  • Published:
International Applied Mechanics Aims and scope

Abstract

The paper analyzes the exact solutions to mixed plane problems of linearized solid mechanics in cases of statics, dynamics, stability, and fracture. The exact solutions have a universal form for compressible and incompressible, elastic and plastic bodies and account for stresses and displacements expressed in terms of analytical functions of complex variables. To obtain these solutions, the use is made of complex variable theory, in particular, the Riemann–Hilbert methods and Keldysh–Sedov formula. When the initial (residual) stresses tend to zero, the exact solutions go over into the corresponding exact solutions of classical linear solid mechanics, which are based on the complex representations due to Muskhelishvili, Lekhnitskii, and Galin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Yu. Babich, “Contact problems for a prestressed half-plane with friction,” Dokl. AN USSR, Ser. A, No. 12, 21-24 (1980).

  2. S. Yu. Babich, “Dynamic contact problems for a prestressed half-plane,” Prikl. Mekh., 18, No. 2, 68-72 (1982).

    Google Scholar 

  3. S. Yu. Babich, “Effect of initial stresses on the contact stress distribution in a prestressed half-plane with friction,” Prikl. Mekh., 22, No. 8, 121-124 (1986).

    Google Scholar 

  4. S. Yu. Babich, “Dynamic contact problem for a prestressed half-plane,” Prikl. Mekh., 23, No. 4, 32-43 (1987).

    Google Scholar 

  5. S. Yu. Babich and A. N. Guz, “Complex potentials in plane dynamic problem for compressible, elastic, prestressed bodies,” Prikl. Mekh., 17, No. 7, 75-83 (1981).

    Google Scholar 

  6. S. Yu. Babich and A. N. Guz, “Complex potentials in plane dynamic problems for incompressible, elastic, prestressed bodies,” Dokl. AN USSR, Ser. A, No. 11, 41-45 (1981).

  7. S. Yu. Babich, A. N. Guz, and V. B. Rudnitskii, “Contact problems for prestressed elastic bodies (rigid punches),” Prikl. Mekh., 25, No. 8, 3-18 (1989).

    Google Scholar 

  8. L. A. Galin, Contact Problems of the Theory of Elasticity [in Russian], Fizmatgiz, Moscow (1953).

    Google Scholar 

  9. R. A. Gasanov, A. N. Guz, and G. G. Kuliev, “Deformation of a prestressed plane with a finite number of mode I cracks located on one line,” Prikl. Mekh., 21, No. 2, 79-85 (1985).

    Google Scholar 

  10. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  11. A. N. Guz, Fundamentals of the Theory of Stability of Mine Workings [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  12. A. N. Guz, “Linearized theory of brittle fracture of prestressed bodies,” DAN SSSR, 252, No. 5, 1085-1088 (1980).

    Google Scholar 

  13. A. N. Guz, “Mode I cracks in elastic bodies with initial stresses,” DAN SSSR, 254, No. 3, 571-574 (1980).

    Google Scholar 

  14. A. N. Guz, “Complex potentials in a linearized plane elastic problem (compressible bodies),” Prikl. Mekh., 16, No. 5, 72-83 (1980).

    Google Scholar 

  15. A. N. Guz, “Complex potentials in a linearized plane elastic problem (incompressible bodies),” Prikl. Mekh., 16, No. 6, 64-70 (1980).

    Google Scholar 

  16. A. N. Guz, “Contact elastic problems for a prestressed half-plane,” Prikl. Mekh., 16, No. 8, 45-58 (1980).

    Google Scholar 

  17. A. N. Guz, “Complex potentials in a linearized plane elastic problem,” Prikl. Mekh., 16, No. 9, 83-97 (1980).

    Google Scholar 

  18. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (problem formulation, mode I cracks),” Prikl. Mekh., 16, No. 12, 3-14 (1980).

    Google Scholar 

  19. A. N. Guz, “Contact problems for elastic compressible bodies with initial stresses,” Dokl. AN USSR, Ser. A, No. 4, 48-52 (1980).

    Google Scholar 

  20. A. N. Guz, “Contact theory for elastic incompressible bodies with initial stresses,” Dokl. AN USSR, Ser. A, No. 7, 42-45 (1980).

  21. A. N. Guz, “A fracture criterion for rigid bodies compressed along cracks. A plane problem,” DAN SSSR, 259, No. 6, 1315-1318 (1981).

    Google Scholar 

  22. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (limiting cases, shear cracks),” Prikl. Mekh., 17, No. 1, 3-13 (1981).

    Google Scholar 

  23. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (hyperelastic materials),” Prikl. Mekh., 17, No. 2, 11-21 (1981).

    Google Scholar 

  24. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (rigid materials),” Prikl. Mekh., 17, No. 4, 3-9 (1981).

    Google Scholar 

  25. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (wedging problems),” Prikl. Mekh., 17, No. 5, 3-12 (1981).

    Google Scholar 

  26. A. N. Guz, “Moving cracks in elastic bodies with initial stresses,” Prikl. Mekh., 18, No. 2, 60-67 (1982).

    Google Scholar 

  27. A. N. Guz, “Fracture mechanics of rigid bodies compressed along cracks (plane problem),” Prikl. Mekh., 18, No. 3, 3-20 (1982).

    Google Scholar 

  28. A. N. Guz, “Fracture mechanics of composites compressed along macrocracks,” Prikl. Mekh., 18, No. 6, 100-110 (1982).

    Google Scholar 

  29. A. N. Guz, Brittle-Fracture Mechanics of Prestressed Materials [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  30. A. N. Guz, “Establishing fundamentals of brittle-fracture mechanics for prestressed materials,” Prikl. Mekh., 19, No. 4, 3-23 (1983).

    Google Scholar 

  31. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).

    Google Scholar 

  32. A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], in two vols., Naukova Dumka, Kiev (1986).

    Google Scholar 

  33. A. N. Guz, “Order of crack-tip singularity in prestressed materials,” DAN SSSR, 289, No. 2, 310-312 (1986).

    Google Scholar 

  34. A. N. Guz, “Order of crack-tip singularity in brittle fracture mechanics,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 24-29 (1986).

    Google Scholar 

  35. A. N. Guz, “General plane problem in the fracture mechanics of rigid bodies compressed along cracks,” Prikl. Mekh., 25, No. 6, 22-27 (1989).

    Google Scholar 

  36. A. N. Guz, Fracture Mechanics of Compressed Composites [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  37. A. N. Guz. “Exact solution to a plane fracture problem for a material compressed along an in-plane crack,” DAN SSSR, 310, No. 3, 563-566 (1990).

    Google Scholar 

  38. A. N. Guz, Brittle Fracture of Prestressed Materials, Vol. 2 of the four-volume five-book series, A. N. Guz (general editor), Nonclassical Problems of Fracture Mechanics [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  39. A. N. Guz, “Developing the fracture mechanics of materials compressed along cracks,” Prikl. Mekh., 28, No. 10, 22-29 (1992).

    Google Scholar 

  40. A. N. Guz, “Developing the brittle-fracture mechanics of prestressed materials,” Prikl. Mekh., 32, No. 4, 88-96 (1996).

    Google Scholar 

  41. A. N. Guz, “Complex potentials in elastic problems for prestressed bodies,” Prikl. Mekh., 32, No. 12, 28-36 (1996).

    Google Scholar 

  42. A. N. Guz, “Exact solution to mixed plane problems in linearized solid mechanics,” Prikl. Mekh., 34, No. 3, 3-36 (1998).

    Google Scholar 

  43. A. N. Guz, “Dynamic problems in the brittle-fracture mechanics of prestressed materials with moving cracks. 1. Problem formulation and general relations,” Prikl. Mekh., 34, No. 12, 3-15 (1998).

    Google Scholar 

  44. A. N. Guz, “Moving semi-infinite cracks in prestressed materials,” Dokl. NAN Ukrainy, No. 1, 71-75 (1998).

  45. A. N. Guz, “The order of singularity at the leading edge of a moving crack in prestressed materials,” Dokl. NAN Ukrainy, No. 2, 52-56 (1998).

  46. A. N. Guz, “Dynamic problems of the mechanics of brittle fracture of materials with initial stresses for moving cracks. 2. Cracks of normal separation (mode 1),” Int. Appl. Mech., 35, No. 1, 1-12 (1999).

    Google Scholar 

  47. A. N. Guz, “Dynamic problems of the mechanics of brittle fracture of materials with initial stresses for moving cracks. 3. Transverse-shear (mode II) and longitudinal-shear (mode III) cracks,” Int. Appl. Mech., 35, No. 2, 109-119 (1999).

    Google Scholar 

  48. A. N. Guz, “Dynamic problems of the mechanics of brittle fracture of materials with initial stresses for moving cracks. 4. Wedge problems,” Int. Appl. Mech., 35, No. 3, 225-232 (1999).

    Google Scholar 

  49. A. N. Guz, “On dynamic contact problems for an elastic half-plane with initial stresses in the case of a moving rigid punch,” Int. Appl. Mech., 35, No. 5, 515-521 (1999).

    Google Scholar 

  50. A. N. Guz, “Constructing the three-dimensional theory of stability of deformable bodies,” Int. Appl. Mech., 37, No. 1, 1-37 (2001).

    Google Scholar 

  51. A. I. Guz and S. Yu. Babich, “Plane dynamic problems for elastic bodies with initial stresses,” DAN SSSR, 261, No. 2, 313-316 (1981).

    Google Scholar 

  52. A. I. Guz and S. Yu. Babich, “Plane dynamic problems for elastic incompressible bodies with initial stresses,” Prikl. Mat. Mekh., 46, No. 2, 263-271 (1982).

    Google Scholar 

  53. A. N. Guz, S. Yu. Babich, and V. B. Rudnitskii, Contact Interaction of Elastic Bodies with Initial Stresses [in Ukrainian], Vyshcha Shk., Kiev (1995).

    Google Scholar 

  54. A. N. Guz and I. A. Guz, “Interfacial stability of two bodies compressed along interfacial cracks. Exact solution for equal roots,” Dokl. NAN Ukrainy, No. 9, 30-33 (1995).

  55. A. N. Guz and I. A. Guz, “Interfacial stability of two bodies compressed along interfacial cracks. Exact solution for unequal roots,” Dokl. NAN Ukrainy, No. 10, 45-48 (1995).

  56. A. N. Guz and I. A. Guz, “Interfacial stability of two bodies compressed along interfacial cracks. Exact solutions. 1. Case of unequal roots,” Prikl. Mekh., 33, No. 3, 28-35 (1997).

    Google Scholar 

  57. A. N. Guz and I. A. Guz, “Interfacial stability of two bodies compressed along interfacial cracks. Exact solutions. 2. Case of equal roots,” Prikl. Mekh., 33, No. 4, 3-10 (1997).

    Google Scholar 

  58. A. N. Guz and I. A. Guz, “Stability of the interface between two bodies compressed along interface cracks. 1. Exact solutions for the case of unequal roots,” Int. Appl. Mech., 36, No. 4, 482-491 (2000).

    Google Scholar 

  59. A. N. Guz and I. A. Guz, “Stability of the interface between two bodies compressed along interface cracks. 2. Exact solutions for the case of equal roots,” Int. Appl. Mech., 36, No. 5, 615-622 (2000).

    Google Scholar 

  60. A. N. Guz and I. A. Guz, “Stability of the interface between two bodies compressed along interface cracks. 3. Exact solutions for the combined case of equal and unequal roots,” Int. Appl. Mech., 36, No. 6, 759-768 (2000).

    Google Scholar 

  61. A. N. Guz and I. A. Guz, “Stability of two different half-planes in compression along interfacial cracks: Analytical solutions,” Int. Appl. Mech., 37, No. 7, 906-912 (2001).

    Google Scholar 

  62. A. N. Guz, M. Sh. Dyshel', and V. M. Nazarenko, Fracture and Stability of Cracked Bodies, Vol. 4 of the four-volume five-book series, A. N. Guz (general editor), Nonclassical Problems of Fracture Mechanics [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  63. A. N. Guz and Yu. V. Kokhanenko, “Numerical solution of three-dimensional stability problems for elastic bodies,” Int. Appl. Mech., 37, No. 11, 1369-1399 (2001).

    Google Scholar 

  64. M. V. Keldysh and L. I. Sedov, “Efficient solution of some boundary-value problems for harmonic functions,” DAN SSSR, 16, No. 1, 7-11 (1937).

    Google Scholar 

  65. S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  66. N. I. Muskhelishvili, Some Basic Problems in the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  67. I. A. Prusov, Some Thermoelastic Problems [in Russian],Izd. BGU im. V. I. Lenina, Minsk (1972).

    Google Scholar 

  68. L. I. Sedov, Continuum Mechanics [in Russian], Vol. 2, Nauka, Moscow (1976).

    Google Scholar 

  69. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  70. J. W. Craggs, “On the propagation of a crack in an elastic-brittle material,” J. Mech. Phys. Solids, 8, No. 1, 66-75 (1960).

    Google Scholar 

  71. E. Radi, D. Bigoni, and D. Capuati, “Effect of prestress on crack tip fields in elastic, incompressible solids,” Int. J. Solids Struct., 39, 3971-3996 (2002).

    Google Scholar 

  72. J. D. Eshelby, “Uniformly moving dislocation,” Proc. Roy. Soc., A 62, Part 5, No. 353, p. 131 (1949).

    Google Scholar 

  73. A. N. Guz, “Foundations of mechanics of brittle fracture of materials with initial stresses,” in: Proc. 6th Int. Congr. on Fracture, Pergamon Press, New Delhi, India (1984), pp. 1223-1230.

    Google Scholar 

  74. A.N. Guz, “Degree of singularity at crack tip in composite materials with initial stresses,” in: Proc. MPC Symposium'86, ITAM, Prague (1986), pp. 2-3.

  75. A. N. Guz, “On construction of mechanics of fracture of materials in compression along the cracks,” in: ICF 7,Advance in Fracture Research, Vol. 6, Pergamon Press (1990), pp. 3881-3892.

  76. A. N. Guz, “Complex potentials in problems of the theory of elasticity of bodies with initial stresses,” in: Proc. Int. Symp. on Continuum Mechanics and Related Problems of Analysis, Metsniereba, Tbilisi (1993), pp. 140-149.

    Google Scholar 

  77. A. N. Guz, “The study and analysis of non-classical problems of fracture and failure mechanics,” in: Abstract Book, UTAM Symp. on Nonlinear Analysis of Fracture, Cambridge, September 3-4 (1995), p. 21.

  78. A.N. Guz, “On non-classical problems and mechanisms of fracture mechanics and their description,” Int. Appl. Mech., 32, No. 11, 827-846 (1996).

    Google Scholar 

  79. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).

    Google Scholar 

  80. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23-59 (2002).

    Google Scholar 

  81. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 1. Problem formulation and basic relations,” Int. Appl. Mech., 38, No. 4, 423-431 (2002).

    Google Scholar 

  82. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 2. Exact solution. The case of unequal roots,” Int Appl. Mech., 38, No. 5, 548-555 (2002).

    Google Scholar 

  83. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 3. Exact solution. The case of equal roots,” Int. Appl. Mech., 38, No. 6, 693-700 (2002).

    Google Scholar 

  84. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 4. Exact solution. The case of unequal and equal roots,” Int. Appl. Mech., 38, No. 7, 806-814 (2002).

    Google Scholar 

  85. A. N. Guz, “Establishing the foundations of the theory of stability of mine workings,” Int. Appl. Mech., 39, No. 1, 20-48 (2003).

    Google Scholar 

  86. A. N. Guz, S. Yu. Babich, and V. B. Rudnitsky, “Contact problems for elastic bodies with initial stresses: Focus on Ukrainian research,” Appl. Mech. Reviews, 51, No. 5, 343-371 (1998).

    Google Scholar 

  87. A. N. Guz and I. A. Guz, “Analytical solution of stability problem for two composite half-planes compressed along interfacial cracks,” Composites, Part B, 31, No. 5, 405-418 (2000).

    Google Scholar 

  88. A. N. Guz and I. A. Guz, “On publications on the brittle fracture mechanics of materials with initial stresses,” Int. Appl. Mech., 39, No. 7, 797-801 (2003).

    Google Scholar 

  89. I. A. Guz and A. N. Guz, “Stability of two dimensional half-planes in compression along interfacial cracks: Analytical solutions,” in: Abstracts of 20th Int. Congr. on Theoretical and Applied Mechanics, Chicago, USA, August 27-September 2 (2000), p. 49.

  90. I. A. Guz and A. N. Guz, “Compressible composites with interlaminar microcracks: exact solutions for distinct roots,” in: Program and Abstracts for the 14th US Nat. Congr. on Theoretical and Applied Mechanics, Blacksburg, USA, June 23-28 (2002), p. 494.

  91. H. Neuber, “Die Gründgleichungen der elastischen Stabilität in allgemeinen Koordinaten und ihre Integration, ” ZAMM, 23, No. 6, 63-82 (1943).

    Google Scholar 

  92. E. Soos, “Resonance and stress concentration in a prestressed elastic solid containing a crack,” Int. J. Eng. Sci., 34, No. 3, 363-374 (1996).

    Google Scholar 

  93. H. M. Westergard, “Bearing pressure and cracks,” J. Appl. Mech., 6, No. 2, A 49-53 (1939).

    Google Scholar 

  94. C. H. Wu, “Plane-strain buckling of a crack in harmonic solid subjected to crack parallel compression,” J. Appl. Mech., 46, 597-604 (1979).

    Google Scholar 

  95. C. H. Wu, “Plane-strain buckling of a crack in incompressible elastic solids,” J. Elasticity, 10, No. 2, 161-177 (1980).

    Google Scholar 

  96. E. Yoffe, “The moving Griffith crack,” Phil. Mag., 4, No. 330, 739-750 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N., Guz, I.A. Mixed Plane Problems in Linearized Solid Mechanics: Exact Solutions. International Applied Mechanics 40, 1–29 (2004). https://doi.org/10.1023/B:INAM.0000023808.08859.48

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INAM.0000023808.08859.48

Navigation