Skip to main content
Log in

Decoherence and Triorthogonal Decomposition

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A “decoherent” measurement is a dephasing plus tracing out plus triorthogonal decomposition. Dephasing can happen any time when a small system is coupled with a large reservoir. It is in principle reversible. But in order to have a measurement we also need the tracing out and the triorthogonal decomposition. The first requirement is observation-dependent (because environment plus apparatus plus object system eventually remain in a superposition). But the second one is an irreversible and irrelative change. In the presence of three “systems” the basis degeneracy problem disappears, i.e. there can be diagonalization only relative to an observable (the measured one).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Auletta, G. (2000). Foundations and Interpretation of Quantum Mechanics in the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results, World Scientific, Singapore, revised edn. 2001.

    Google Scholar 

  • Breuer, T. (1997). Quantenmechanik--Ein Fall für Gödel?, Spektrum, Heidelberg.

    Google Scholar 

  • Busch, P., Grabowski, M., and Lahti, P. J. (1995). Operational Quantum Physics, Springer, Berlin.

    Google Scholar 

  • Busch, P., Lathi, P., and Mittelstaedt, P. (1991). The Quantum Theory of Measurement, 2nd edn., Springer, Berlin.

    Google Scholar 

  • Cini, M. (1983). Quantum theory of measurement without wave packet collapse. Nuovo Cimento 73B, 27–54.

    Google Scholar 

  • Davies, E. B. (1976). Quantum Theory of Open Systems, Academic Press, London.

    Google Scholar 

  • Elby, A. and Bub, J. (1994). Triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics. Physical Review A49, 4213–4216.

    Google Scholar 

  • Fink, H. and Leschke, H. (2000). Is the universe a quantum system? Foundations of Physics Letters 13, 345–356.

    Google Scholar 

  • Giulini, D., Joos, E., Kiefer, C., Kuptsch, J., Stamatescu, I.-O., and Zeh, H. D. (eds.) (1996). Decoher-ence and the Appearance of a Classical World in Quantum Theory, Springer, Berlin.

    Google Scholar 

  • Joos, E. (1996a). Decoherence through interaction with the environment. In Decoherence and the Appearance of a Classical World in Quantum Theory, D. Giulini, E. Joos, C. Kiefer, J. Kuptsch, I.-O. Stamatescu, and H. D. Zeh, eds., Springer, Berlin, pp. 35–136.

    Google Scholar 

  • Kiefer, C. (1996b). Consistent histories and decoherence. In Decoherence and the Appearance of a Classical World in Quantum Theory, D. Giulini, E. Joos, C. Kiefer, J. Kuptsch, I.-O. Stamatescu, and H. D. Zeh, eds., Springer, Berlin, pp. 157–186.

    Google Scholar 

  • Lüders, G. (1951). Ñber die Zustandsänderung durch Meßprozeß. Annalen der Physik 8, 322–328.

    Google Scholar 

  • Machida, S. and Namiki, M. (1980). Theory of measurement in quantum mechanics. Mechanism of reduction of wave packet I–II. Progress of Theoretical Physics 63, 1457–1473, 1833–1847.

    Google Scholar 

  • Mittelstaedt, P. (1998). The Interpretation of Quantum Mechanics and the Measurement Process, University Press, Cambridge.

    Google Scholar 

  • Nakazato, H. and Pascazio, S. (1993). Solvable dynamical model for a quantum measurement process. Physical Review Letters 70,1–4.

    Google Scholar 

  • Namiki, M. and Pascazio, S. (1993). Quantum theory of measurement based on the many-Hilbert-space approach. Physics Reports 232, 301–411.

    Google Scholar 

  • Omnès, R. (1994). Interpretation of Quantum Mechanics, University Press, Princeton.

    Google Scholar 

  • Scully, M. O., Shea, R., and McCullen, J. D. (1978). State reduction in quantum mechanics: A calculation example. Physics Reports 43C, 485–498.

    Google Scholar 

  • Woo, C. H. (1986). Why the classical-quantal dualism is still with us. American Journal of Physics 54, 923–928.

    Google Scholar 

  • Zeh, H. D. (1970). On the interpretation of measurement in quantum theory. Foundations of Physics 1,69–76.

    Google Scholar 

  • Zeh, H. D. (1993). There are no quantum jumps, nor are there particles! Physics Letters 172A, 189–192.

    Google Scholar 

  • Zurek, W. H. (1981). Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?. Physical Review D24, 1516–1525.

    Google Scholar 

  • Zurek, W. H. (1982). Environment-induced superselection rules. Physical Review D26, 1862–1880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auletta, G. Decoherence and Triorthogonal Decomposition. International Journal of Theoretical Physics 43, 2263–2274 (2004). https://doi.org/10.1023/B:IJTP.0000049025.34503.e8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000049025.34503.e8

Navigation