Skip to main content
Log in

Physical Complexity of Classical and Quantum Objects and Their Dynamical Evolution From an Information-Theoretic Viewpoint

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Charles Bennett's measure of physical complexity for classical objects, namely logical-depth, is used to prove that a chaotic classical dynamical system is not physically complex. The natural measure of physical complexity for quantum objects, quantum logical-depth, is then introduced to prove that a chaotic quantum dynamical system too is not physically complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adleman, L. (1979, April). Time, space and randomness. Technical Report LCS/TM-131, MIT.

  • Alekseev, V. M. and Yakobson, M. V. (1981). Symbolic dynamics and hyperbolic dynamic systems. Physics Reports 75(5), 287–325.

    Google Scholar 

  • Alicki, R. and Fannes, M. (2001). Quantum Dynamical Systems, Oxford University Press, Oxford, UK.

    Google Scholar 

  • American Mathematical Society (2000). Kolmogorov in Perspective, American Mathematical Society, London.

    Google Scholar 

  • Benatti, F. (1993). Deterministic Chaos in Infinite Quantum Systems, Springer-Verlag, Berlin.

    Google Scholar 

  • Bennett, C. H. (1982). On the logical depth of sequences and their reducibilities to random sequences. Unbublished manuscript.

  • Bennett, C. H. (1985). Information, dissipation, and the definition of organization. In Emerging Sintheses in Science, D. Pines, ed., Santa Fe Institute, Santa Fe, NM.

    Google Scholar 

  • Bennett, C. H. (1988). Logical depth and physical complexity. In The Universal Turing Machine; A Half-Century Survey, Herken, R. H. ed., Oxford University Press, Oxford, pp. 227–258. Available at Tom Toffoli's Quantum Computation Archive at http://pks.bu.edu/qcl/.

    Google Scholar 

  • Berthiaume, A., van Dam, W., and Laplante, S. (2001). Quantum Kolmogorov complexity. Journal of Computer and Systems Sciences 63(2):201–221. quant-ph/0005018.

    Google Scholar 

  • Billingsley, P. (1965). Ergodic Theory and Information, Wiley, New York.

    Google Scholar 

  • Brudno, A. A. (1978). The complexity of the trajectories of a dynamical system. Russian Mathematical Surveys 33(1), 197–198.

    Google Scholar 

  • Brudno, A. A. (1983). Entropy and the complexity of the trajectories of a dynamical system. Trans. Moscow Math. Soc. 44, 127.

    Google Scholar 

  • Calude, C. (2002). Information and Randomness. An Algorithmic Perspective, Springer-Verlag, Berlin.

    Google Scholar 

  • Chaitin, G. (1977). Algorithmic information theory. IBM J. Res. 21, 350–359.

    Google Scholar 

  • Connes, A., Narnhofer, H., and Thirring, W. (1987). Dynamical entropy of C algebras and von Neumann algebras. In Selected Papers of Walter E. Thirring With Commentaries, American Mathematical Society, Providence, Rhode Island, pp. 159–188. (1998). Originally appeared in Communications in Mathematical Physics 112, 691–719.

    Google Scholar 

  • Gacs, P. (1986). Every sequence is reducible to a random sequence. Inf. Contr. 70, 186–192.

    Google Scholar 

  • Gacs, P. (2000). Quantum algorithmic entropy. Journal of Physics A: Mathematical General 34,1–22. quant-ph/0001046.

    Google Scholar 

  • Hartmanis, J. (1983). Generalized Kolmogorov complexity and the structure of the feasible computation. In Proceedings of the 24th IEEE Symposium on the Foundations of Computer Science, pp. 439–445.

  • Kolmogorov, A. N. (1983). On the logical foundations of probability theory. In Selected Works of A. N. Kolmogorov, Vol. 2: Probability Theory and Mathematical Statistics, A. N. Shiryayev, ed., Kluwer Academic Publishers, Dordrecht, pp. 515–519 (1992). Originally appeared as Lecture Notes in Mathematics 1021,1–5, 1983.

    Google Scholar 

  • Kolmogorov, A. N. (1965). Three approaches to the definition of the notion of amount of information. In Selected Works of A. N. Kolmogorov, Vol. 3: Information Theory and the Theory of Algorithms, A. N. Shiryayev, ed., Kluwer Academic Publishers, Dordrecht, pp. 184–193 (1993). Originally appeared in Problemy Pederachi Informatsii 1(1), 1–13, 1965.

    Google Scholar 

  • Kolmogorov, A. N. (1969). To the logical foundations of the theory of information and probability theory. In Selected Works of A.N. Kolmogorov, Vol. 3: Information Theory and the Theory of Algorithms, A. N. Shiryayev, ed., Kluwer Academic Publishers, Dordrecht, pp. 203–207 (1993). Originally appeared in Problemy Pederachi Informatsii 5(3), 3–7.

    Google Scholar 

  • Kolmogorov, A. N. (1983). The combinatorial foundations of information theory and the probability calculus. In Selected Works of A. N. Kolmogorov, Vol. 3: Information Theory and the Theory of Algorithms, A. N. Shiryayev, ed., Kluwer Academic Publishers, Dordrecht, pp. 208–218 (1993). Originally appeared in Uspekhi Mat. Nauk 38(4), 27–36, 1983.

    Google Scholar 

  • Kolmogorov, A. N. (1958). New metric invariant of transitive dynamical systems and automorphisms of Lebesgue space. In Selected Works of A.N. Kolmogorov, Vol. 3: Information Theory and the Theory of Algorithms, A. N. Shiryayev, ed., Kluwer Academic Publishers, Dordrecht, pp. 57–61, (1993a). Originally appeared in Dokl. Akaud. Nauk SSSR, 119(5), 861- 864, 1958.

    Google Scholar 

  • Kornfeld, I. P. and Sinai, Y. G. (2000). General ergodic theory of groups of measure preseving trasformations. In Dynamical Systems, Ergodic Theory and Applications, Y. G. Sinai, ed., Springer-Verlag, Berlin, pp. 1–102.

    Google Scholar 

  • Levin, L. A. (1984). Randomness conservation inequalities: Information and independence in mathematical theories. Inf. Contr. 61,15–37.

    Google Scholar 

  • Levin, L. A. and V'Jugin, V. V. (1977). Invariant Properties of Informational Bulks, Springer-Verlag, Berlin, pp. 359–364.

    Google Scholar 

  • Li M. and Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, New York.

    Google Scholar 

  • Lindblad, G. (1979). Non-Markovian quantum stochastic processes and their entropies. Communications in Mathematical Physics 65, 281–294.

    Google Scholar 

  • Manin, Yu. I. (1999). Classical computing, quantum computing and Shor's factoring algorithm. Talk given at the Bourbaki Seminar, 12–13 June 1999 at the Institute Henri Poincaré, Paris. quant-ph/9903008.

  • Nielsen, M. (2002). Quantum information science as an approach to complex quantum systems. quant-ph/ 0208078.

  • Nielsen, M. (2002). Quantum information science and complex quantum systems. quant-ph/0210005.

  • Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Odifreddi, P. (1989). Classical Recursion Theory, 1, Elsevier Science, Amsterdam.

    Google Scholar 

  • Odifreddi, P. (1999). Classical Recursion Theory, Vol. 2, Elsevier Science, Amsterdam.

    Google Scholar 

  • Redei, M. (1998). Quantum Logic in Algebraic Approach, Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Redei, M. (2001). Von Neumann's concept of quantum logic and quantum probability. In John Von Neumann and the Foundations of Quantum Physics, M. Redei and N. Stöltzner, eds., Kluwer Academic Publisher, Dordrecht, pp. 153–176.

    Google Scholar 

  • Reed, M. and Simon, B. (1975). Methods of Modern Mathematical Physics. Vol. 2: Fourier Analysis, Self-Adjointness, Academic Press, New York.

    Google Scholar 

  • Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics. Vo. 1: Functional Analysis, Academic Press, New York.

    Google Scholar 

  • Segre, G. (2002). Algorithmic Information Theoretic Issues in Quantum Mechanics, PhD Thesis, Dipartimento di Fisica Nucleare e Teorica. quant-ph/0110018; mp-arc–01–390, Pavia, Italy.

  • Sinai, Y. G. (1976). Introduction to Ergodic Theory, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Sinai, Ya. G. (1994). Topics in Ergodic Theory, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Staiger, L. (1999). The Kolmogorov complexity of real numbers. In Fundamentals of Computation Theory, G. Ciobanu and Gh. Paun, eds., Springer-Verlag, Berlin, pp. 536–546. Available at author's home-page: http://www.informatik.uni-halle.de/ staiger/.

    Google Scholar 

  • Stormer, E. (2002). A survey of noncommutative dynamical entropy. In Classification of Nuclear C-Algebras. Entropy in Operator Algebras, M. Rordam and E. Stormer, eds., Springer-Verlag, Berlin, pp. 148–198.

    Google Scholar 

  • Svozil, K. (1996). Quantum algorithmic information theory. Journal of Universal Computer Science, 2, 311–346. quant-ph/9510005.

    Google Scholar 

  • Thirring, W. (1983). A Course in Mathematical Physics, Vol. 4: Quantum Mechanics of Large Systems, Springer-Verlag, Berlin.

    Google Scholar 

  • Vitanyi, P. (1999). Two approaches to the quantitative definition of information in an individual pure quantum state. quant-ph/99070355, July.

  • Vitanyi, P. M. B. (2001). Quantum Kolmogorov complexity based on classical descriptions. IEEE Transactions on Information Theory 47(6), 2464–2479. quant-ph/0102108.

    Google Scholar 

  • von Neumann, J. (1929). Beweis des ergodensatzes und des h-theorems in der neuen mechanik. Zschr. f. Physik 57,30–70.

    Google Scholar 

  • Wolfram, S. (1985). Undecidability and intractability in theoretical physics. Physical Review Letters 54, 735–738.

    Google Scholar 

  • Zelditch, S. (1996). Quantum ergodicity of C dynamical systems. Communications in Mathematical Physics 177, 507–528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segre, G. Physical Complexity of Classical and Quantum Objects and Their Dynamical Evolution From an Information-Theoretic Viewpoint. International Journal of Theoretical Physics 43, 1371–1395 (2004). https://doi.org/10.1023/B:IJTP.0000048622.20990.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000048622.20990.2e

Navigation