Skip to main content
Log in

Topological Five-Dimensional Chern–Simons Gravity Theory in the Canonical Covariant Formalism

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The canonical covariant formalism (CCF) of the topological five-dimensional Chern–Simons gravity is constructed. Because this gravity model naturally contains a Gauss–Bonnet term, the extended CCF valid for higher curvature gravity must be used. In this framework, the primary constraint and the total Hamiltonian are found. By using the equations of the CCF, it is shown that the bosonic five-form which defines the total Hamiltonian is a first-class dynamical quantity strongly conserved. In this context the equations of motion are also analyzed. To determine the effective interactions of the model, the toroidal dimensional reduction of the five-dimensional Chern–Simons gravity is carried out. Finally the first-order CCF and the usual canonical vierbein formalism (CVF) are related and the Hamiltonian as generator of time evolution is constructed in terms of the first-class constraints of the coupled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achucarro, A. and Townsend, P. (1986). Physics Letters B 180, 85.

    Google Scholar 

  • Birmingham, D., Blau, M., Rakowski, M., and Thompson, G. (1991) Physics Report 209, 129.

    Google Scholar 

  • Castellani, I., van Nieuwenhuizen, P., and Pilati, M. (1982). Physics Report D 26, 352.

    Google Scholar 

  • Chamseddine, A. H. (1989). Physics Letters B 233, 291.

    Google Scholar 

  • D'Adda, A., Nelson, J. E., and Regge, T. (1985). Annale of Physics (New York) 165, 384.

    Google Scholar 

  • Dirac, P. A. M. (1962). Recent Developments in General Relativity, Pergamon, New York.

    Google Scholar 

  • Ferrara, S., Fré, P., and Porrati, M. (1987). Annale of Physics (New York) 175, 112.

    Google Scholar 

  • Foussats, A. and Zandron, O. (1989). Annale of Physics (New York) 191, 312.

    Google Scholar 

  • Foussats, A. and Zandron, O. (1990). International Journal of Modern Physics A 5, 725.

    Google Scholar 

  • Foussats, A. and Zandron, O. (1991). Physics Report D 43, 1883.

    Google Scholar 

  • Grignani, G, and Nardelli, G. (1991). Physics Letters B 264, 45.

    Google Scholar 

  • Koehler, K., Mansouri, F., Vaz, C., and Witten, L. (1990). Modern Physics Letters A 5, 935.

    Google Scholar 

  • Koehler, K., Mansouri, F., Vaz, C., and Witten, L. (1991a). Journal of Mathematics and Physics 32, 239.

    Google Scholar 

  • Koehler, K., Mansouri, F., Vaz, C., and Witten, L. (1991b). Nuclear Physics B 358, 677.

    Google Scholar 

  • Koehler, K., Mansouri, F., Vaz, C., and Witten, L. (1992). Nuclear Physics B 348, 373.

    Google Scholar 

  • Iengo, R. and Lechner, K. (1992). Physics Report 213, 1.

    Google Scholar 

  • Lerda, A., Nelson, J. E., and Regge, T. (1987). International Journal of Modern Physics A 2, 1843.

    Google Scholar 

  • Macías, A. and Lozano, E. (2001). Modern Physics Letters A 38, 2421.

    Google Scholar 

  • Ne'eman, Y. and Regge, T. (1978). Physics Letters B 74, 31.

    Google Scholar 

  • Ne'eman, Y. and Regge, T. (1978). Riv. Nuovo Cimento 1, 1.

    Google Scholar 

  • Nelson, J. E. and Regge, T. (1986). Annale of Physics (New York) 166, 234.

    Google Scholar 

  • Nelson, E. and Teitelboim, C. (1977). Physics Letters B 69, 81.

    Google Scholar 

  • Nelson, E. and Teitelboim, C. (1978). Annale of Physics (New York) 116, 1.

    Google Scholar 

  • Teitelboim, C. (1977). Physical Review Letters 38, 1106.

    Google Scholar 

  • Uematzu, T. (1985). Zeitschrift For Physik C 29, 143.

    Google Scholar 

  • van Nieuwenhuizen, P. (1985). Physical Review D: Particles and Fields 32, 872.

    Google Scholar 

  • Weinberg, S. (1995). The Quantum Theory of Fields, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Witten, E. (1988). Nuclear Physics B 321, 46.

    Google Scholar 

  • Witten, E. (1989a). Communications in Mathematics and Physics 121, 351.

    Google Scholar 

  • Witten, E. (1989b). Nuclear Physics B 311, 46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandron, O.S. Topological Five-Dimensional Chern–Simons Gravity Theory in the Canonical Covariant Formalism. International Journal of Theoretical Physics 42, 2705–2720 (2003). https://doi.org/10.1023/B:IJTP.0000005980.46888.c9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000005980.46888.c9

Navigation