Skip to main content
Log in

Multitaper Techniques and Filter Diagonalization Methods—A Comparison

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present contribution we compare the new Multitaper Filtering technique with the very popular Filter Diagonalization Method. The substitution of a time-independent problem, like the standard Schrödinger equation, by a time-dependent one from the Filter Diagonalization Method allows the employment of and comparison with standard signal processing filtration machinery. The use of zero-order prolate spheroidal tapers as filtering functions is here extended and exactly formulated using techniques originating from general investigations of prolate spheroidal wave functions. We investigate the modifications presented with respect to accuracy and general effectiveness. The approach may be useful in various branches of physics and engineering sciences including signal processing applications as well as possibly also in general time-dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov, A. A., Dyshko, A. L., Konyukhova, N. B., and Levitina, T. V. (1991). Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase function method. Computational Maths and Mathematical Physics 31(2), 25.

    Google Scholar 

  • Abramov, A. A., Dyshko, A. L., Konyukhova, N. B., Pak, T. V., and Pariiskii, B. S. (1984). Evaluation of prolate spheroidal functions by solving the corresponding differential equations. Computational Maths and Mathematical Physics 24(1), 1.

    Google Scholar 

  • Akhiezer, N. I. and Glazman, I. M. (1993). Theory of Linear Operators in Hilbert Space, Dover, New York.

    Google Scholar 

  • Belkić, Dz., Dando, P. A., Main, J., Taylor, H. S., and Shin, S. K. (2001). Decimated signal diagonalization for Fourier transform spectroscopy. J. Phys. Chem. A 105, 514.

    Google Scholar 

  • Chen, R. and Guo, H. (1996). A general and efficient filter-diagonalization method without time propagation. Journal of Chemical Physics 105, 1311.

    Google Scholar 

  • Feit, M. D., Fleck, J. A., and Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics 47, 412.

    Google Scholar 

  • Komarov, I. V., Ponomarev, L. I., and Slavyanov, S. Yu. (1976). Spheroidal and Coulomb Spheroidal Functions (In Russian), Nauka, Moscow.

    Google Scholar 

  • Landau, H. J. and Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell System Technical Journal 40, 65.

    Google Scholar 

  • Levitina, T. V. and Brändas, E. J. (2001). Computational techniques for prolate spheroidal wave funtions in signal processing. Journal of Comparitive Methods Science and Energy 1(1), 287.

    Google Scholar 

  • Mandelshtam, V. A. (2001). FDM: The filter diagonalization method for data processing in NMR experiments, Progress in Nuclear Magnetic Resonance Spectroscopy 38, 159.

    Google Scholar 

  • Mandelshtam, V. A. and Taylor, H. S. (1997). Harmonic inversion of time signals and its applications. Journal of Chemical Physics 107, 6756.

    Google Scholar 

  • McCoy, E. J., Walden, A. T., and Percival, D. B. (1998). Multitaper spectral estimation of power law processes. IEEE Transactions on Signal Processing 46(3), 655.

    Google Scholar 

  • Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics, Part 1, McGraw-Hill, New York.

    Google Scholar 

  • Naimark, M. A. (1967). Linear Differential Operators, Part I, Ungar (Fredenck), New York.

    Google Scholar 

  • Neuhauser, D. (1990). Bound state eigenfunctions from wave packets time energy resolution. Journal of Chemical Physics 93, 2611.

    Google Scholar 

  • Pang, J. W., Dieckmann, T., Feigon, J., and Neuhauser, D. (1998). Extraction of spectral information from a short-time signal using filter-diagonalization: Recent developments and applications to semiclassical reaction dynamics and nuclear magnetic resonance signals Journal of Chemical Physics 108, 8360.

    Google Scholar 

  • Pang, J. W. and Neuhauser, D. (1996). Application of generalized filter diagonalization to extract instantaneous normal modes. Chemical Physics Letters 252, 173.

    Google Scholar 

  • Percival, D. B. and Walden, A. T. (1993). Spectral Analysis for Physical Applications—Multitaper and Conventional Univariate Techniques, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Slepian, D. (1964). Prolate spheroidal wave functions, Fourier analysis and uncertainty, IV: Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Technical Journal 43, 3009.

    Google Scholar 

  • Slepian, D. and Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty, I. Bell System Technical Journal 40, 43.

    Google Scholar 

  • Slepian, D. and Pollak, H. O. (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty, III: The dimension of essentially time-and band-limited signals. Bell System Technical Journal 41, 1295.

    Google Scholar 

  • Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of IEEE 70, 1055.

    Google Scholar 

  • Wall, M. R. and Neuhauser, D. (1995). Extraction, through filter diagonalization, of general quantum eigenvalues or classical normal mode frequencies from a small number of residues or a short-time segment of a siganl. I. Theory and application to a quantum-dynamics model. Journal of Chemical Physics 102, 8011.

    Google Scholar 

  • Yu, H. G. and Smith, S. C. (1997). The calculation of vibrational eigenstates by MINRES filter diagonalization. Berichte der Bunsengesellschaft fur Physikalische Chemie 101, 400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitina, T., Brändas, E.J. Multitaper Techniques and Filter Diagonalization Methods—A Comparison. International Journal of Theoretical Physics 42, 2531–2544 (2003). https://doi.org/10.1023/B:IJTP.0000005973.84938.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000005973.84938.34

Navigation