International Journal of Theoretical Physics

, Volume 42, Issue 10, pp 2487–2504 | Cite as

The Direction of Time: From the Global Arrow to the Local Arrow

  • Mario Castagnino
  • Luis Lara
  • Olimpia Lombardi


In this paper we discuss the traditional approaches to the problem of the arrow of time. On the basis of this discussion we adopt a global and nonentropic approach, according to which the arrow of time has a global origin and is an intrinsic, geometrical feature of space-time. Finally, we show how the global arrow is translated into local terms as a local time-asymmetric flux of energy.

time arrows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohm, A. (1979). Quantum Mechanics, Foundations and Applications, Springer-Verlag, Berlin.Google Scholar
  2. Bohm, A. and Gadella, M. (1989). Dirac Kets, Gamow Vectors, and Gel'fand triplets, Springer-Verlag, Berlin.Google Scholar
  3. Boltzmann, L. (1897). Annual of Physics 60, 392.Google Scholar
  4. Castagnino, M. (1998). The global nature of time asymmetry and the Bohm-Reichenbach diagram. In Irreversibility and Causality (Proc. G. 21 Goslar 1996), A. Bohm, H. Doebner, and P. Kielanowski eds., Springer-Verlag, Berlin.Google Scholar
  5. Castagnino, M. (1989). Physical Review D 29, 2216.Google Scholar
  6. Castagnino, M. and Gunzig, E. (1997a). International Journal of Theortical Physics 36, 2545.Google Scholar
  7. Castagnino, M. and Gunzig, E. (1997b). International Journal of Theortical Physics 36, 2545.Google Scholar
  8. Castagnino, M. and Gunzig, E. International Journal of Theortical Physics 38, 47.Google Scholar
  9. Castagnino, M. and Laciana, C. (2002). Classical and Quantum Gravity 19, 2657.Google Scholar
  10. Castagnino, M. and Laura, R. (1997). Physical Review A 56, 108.Google Scholar
  11. Castagnino, M. and Lombardo, F. (1993). Physical Review D 48, 1722.Google Scholar
  12. Castagnino, M. and Mazzitelli, F. D. (1990). Physical Review D 42, 482.Google Scholar
  13. Castagnino, M., Gaioli, F., and Gunzig, E. (1996). Foundations of Cosmic Physics 16, 221.Google Scholar
  14. Castagnino, M., Giacomini, H., and Lara, L. (2000). Physical Review D 61, 107302.Google Scholar
  15. Castagnino, M., Giacomini, H., and Lara, L. (2001). Physical Review D 63, 044003.Google Scholar
  16. Castagnino, M., Gueron, J., and Ordoñez, A. (2002). Journal of Mathematical Physics 43, 705.Google Scholar
  17. Castagnino, M., CatrenG., and Ferraro, R. (in press). Time asymmetries in quantum cosmology and the searching for boundary conditions to the Wheeler-De Witt equation. Classical and Quantum Gravity.Google Scholar
  18. Castagnino, M., Lara, L., and Lombardi, O. (in press). The cosmological origin of time-asymmetry. Classical and Quantum Gravity (LANL quant-ph/0211163).Google Scholar
  19. Davies, P. C. (1994). Stirring up trouble. In Physical Origins of Time Asymmetry, J. J. Halliwell, J. Perez-Mercader, and W. H. Zurek, eds., Cambridge University Press, Cambridge, UK.Google Scholar
  20. Earman, J. (1974). Phil. Scie. 41, 15.Google Scholar
  21. Ehrenfest, P. and Ehrenfest, T. (1959). The Conceptual Foundations of the Statistical Approach in Mechanics, Cornell University Press, Ithaca, (original 1912).Google Scholar
  22. Feynman, R. P., LeightonR. B., and Sands, M. (1964). The Feynman Lectures on Physics, Vol. 1, Addison-Wesley, New York.Google Scholar
  23. Haag, R. (1996). Local Quantum Physics. Fields, Particles, Algebras, Springer, Berlin.Google Scholar
  24. Hawking, S. and Ellis, J. (1973). The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, UK.Google Scholar
  25. Landau, L. and Lifchitz, E. (1970). Théorie des Champs, Editions Mir, Moscow.Google Scholar
  26. Lax, P. D. and Phillips, R. S. (1979). Scattering Theory, Academic Press, New York.Google Scholar
  27. Lichnerowicz, A. (1955). Théories Relativistes de la Gravitation et de l'Electromagnetisme, Masson, Paris.Google Scholar
  28. Mattews, G. (1979). Phil. Scie. 46, 82.Google Scholar
  29. Misner, C. W., ThorneK. S., and Wheeler, J. A. (1973). Gravitation, Freeman and Co., San Francisco.Google Scholar
  30. Penrose, R. (1979). Singularities and time asymmetry. In General Relativity, an Einstein Centenary Survey, S. Hawking and W. Israel, eds., Cambridge University Press, Cambridge, UK.Google Scholar
  31. Price, H. (1996). Time's Arrow and the Archimedes' Point, Oxford University Press, Oxford.Google Scholar
  32. Sachs, R. G. (1987). The Physics of Time-Reversal, University of Chicago Press, Chicago.Google Scholar
  33. Schutz, B. F. (1980). Geometrical Methods of Mathematical Physics, Cambridge University Press Cambridge, UK.Google Scholar
  34. Sudarshan, C. G., Chiu, C. B., and Gorini, V. (1978). Physical Review D 18, 2914.Google Scholar
  35. Visser, M. (1996). Lorentzian Wormholes, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Mario Castagnino
    • 1
  • Luis Lara
    • 2
  • Olimpia Lombardi
    • 3
  1. 1.Instituto de Astronomía y Física del EspacioBuenos AiresArgentina
  2. 2.Departamento de FísicaUniversidad Nacional de RosarioRosarioArgentina
  3. 3.CONICET—Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations