Skip to main content
Log in

Oscillating Decay of an Unstable System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the medium-time behavior of the survival probability in the frame of the N-level Friedrichs model. The time evolution of an arbitrary unstable initial state is determined. We show that the survival probability may oscillate significantly during the so-called exponential era. This result explains qualitatively the experimental observations of the NaI decay. The Gamow states for N-level Friedrichs model are constructed. The time evolution in terms of the complex spectral representation including the Gamow states is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alicki, R. and Lendi, K. (1987). Quantum Dynamical Semigroups and Applications (Springer Lecture Notes in Physics, Vol. 286), Springer, Berlin.

    Google Scholar 

  • Antoniou, I., Karpov, E., Pronko, G., and Yarevsky, E. (2001). Quantum Zeno and anti-zeno effects in the Friedrichs model. Physical Review A 63, 062110.

    Google Scholar 

  • Antoniou, I. and Prigogine, I. (1993). Intrinsic irreversibility and integrability of dynamics. Physica A 192, 443.

    Google Scholar 

  • Balzer, Chr., Huesmann, R., Neuhauser, W., and Toschek, P. E. (2000). The quantum Zeno effect-evolution of an atom impeded by measurement. Optics Communications 180, 115.

    Google Scholar 

  • Bailey, T. K. and SchieveW. C. (1978). Complex Energy Eigenstates in Quantum Decay Models. Nouvo Cimento A 47, 231.

    Google Scholar 

  • Bohm, A. and Gadella, M. (1989). Dirac Kets, Gamow Vectors and Gelfand Triplets, (Springer Lecture Notes in Physics, Vol. 348), Springer, Berlin.

    Google Scholar 

  • Cong, P., Roberts, G., Herek, J. L., Mohkatari, A., and Zewail, A. H. (1996). Femtosecond Real-Time Probing of Reactions. 18. Experimental and Theoretical Mapping of Trajectoraes and Potentials in the Nal Dissociation Reaction. Journal of Physical Chemistry 100, 7832.

    Google Scholar 

  • Davies, E. B. (1974). Dynamics of a multilevel Wigner-Wejsskopf atom. Journal of Mathematical Physics 15, 2036.

    Google Scholar 

  • Duerinckx, G. (1983). On the point spectrum of the N-points Friedrichs model. Journal of Physics A 16, L289.

    Google Scholar 

  • Exner, P. (1985). Open Quantum Systems and Feynman Integrals, Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Facchi, P., Nakazato, H., and Pascazio, S. (2001). From the Quantum zeno to the Inverse Quantum zeno effect. Physical Review Letters 86, 2699.

    Google Scholar 

  • Facchi, P. and Pascazio, S. (1999). Deviations from exponential law and Van Hove's “λ2 t” limit. Physica A 271, 133.

    Google Scholar 

  • Felker, P. M. and Zewail, A. H. (1995). In: Jet Spectroscopy and Molecular Dynamics, M. Hollas and D. Philips, eds., Chapman and Hall, New York.

    Google Scholar 

  • Fischer, M. C., Gutierrez-Medina, B., and Raizen, M. G. (2001). Observation of the Quantum zeno and Anti-Zone Effects in an Unstable System. Physical Review Letters 87, 040402.

    Google Scholar 

  • Friedrichs, K. (1948). On the periurbation of continuous spectra. Communications in Pure and Applied Mathematics 1, 361.

    Google Scholar 

  • Gaspard, P. and Burghardt, I. (Eds.) (1997). Chemical reactions and their control on the femtosecond time scale. In Advances in Chemical Physics, Vol. 101, John Wiley & Sons, New York.

  • Hegerfeldt, G. C. and PlenioM. B. (1992). Macroscopic dark periods without a metastable state. Physical Review A 46, 373.

    Google Scholar 

  • Hegerfeldt, G. C. and Plenio, M. B. (1993). Coherence with incoherent light: A new type of quantum beats for a single atom. Physical Review A 47, 2186.

    Google Scholar 

  • Imre, D., Kinsey, J. L., Sinha, A., and Krenos, J. (1984). Chemical dynamics studied by emission spectroscopy of dissociating molecules. Journal of Physical Chemistry 88, 3956.

    Google Scholar 

  • Itano, W. M., Heinzen, D. J., Bollinger, J. J., and Wineland, D. J. (1990). Quantum zeno effect. Physical Review A 41, 2295.

    Google Scholar 

  • Khalfin, L. A. (1957). Contribution to the theory of decay of a quasi-stationary state. Soviet Physics Doklady 2, 340.

    Google Scholar 

  • Khalfin, L. A. (1958). Contribution to the decay theory of a quasi-stationary state. Soviet Physics JETP 6, 1053.

    Google Scholar 

  • Kofman, A. G. and Kurizki, G. (2000). Acceleration of quantum decay processes by frequent obsorvations. Nature (London) 405, 546.

    Google Scholar 

  • Kofman, A. G., Kurizki, G., and Sherman, B. (1994). Spontaneous and induced atomic decay in photonic band structures. Journal of Modern Optics 41, 353.

    Google Scholar 

  • Lendi, K. (1980). On quantum beats in polyatomic molecules. Chemical Physics 46, 179.

    Google Scholar 

  • Lienau, C. and Zewail, A. H. (1996). Solvation Ultrafast Dynamics of Reactions. 11. Dissociation and Caging Dynamics in the Gas-to-Liquid Transition Region. Journal of Physical Chemistry 100, 18629.

    Google Scholar 

  • Likhoded, A. and Pronko, G. (1997). Possible Origin of Extra States in Particle Physics. International Journal of Theoretical Physics 36, 2335.

    Google Scholar 

  • Namiki, M., Pascazio, S., and Nakazato, H. (1997). Decoherence and Quantum Measurements, World Scientific, Singapore.

    Google Scholar 

  • Ordonez, G., Petrosky, T., and Prigogine, I. (2001). Quantum transitions and dressed unstable states. Physical Review A 63, 052106.

    Google Scholar 

  • Petrosky, T., Prigogine, I., and Tasaki, S. (1991). Quantum theory of non-integrable systems. Physica A 173, 175.

    Google Scholar 

  • Potter, E. D., Herek, J. L., Pedersen, S., Liu, Q., and Zewail, A. H. (1992). Femtosecond laser control of a chemical reaction. Nature 355, 66.

    Google Scholar 

  • Ruuskanen, P. V. (1970). Non-exponential decays in a Lee model with several unstable V-particles. Nuclear Physics B 22, 253.

    Google Scholar 

  • Stey, G. C. and Gibberd, R. W. (1972). Decay of quantum states in some exactly soluble models. Physica 60, 1.

    Google Scholar 

  • Zewail, A. H. (2000). Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond. Journal of Physical Chemistry A 104, 5660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoniou, I., Karpov, E., Pronko, G. et al. Oscillating Decay of an Unstable System. International Journal of Theoretical Physics 42, 2403–2421 (2003). https://doi.org/10.1023/B:IJTP.0000005966.53444.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000005966.53444.b8

Navigation