Skip to main content
Log in

Time Asymmetry and Quantum Theory of Resonances and Decay

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

These notes review a consistent and exact theory of quantum resonances and decay. Such a theory does not exist in the framework of traditional quantum mechanics and Dirac's formulation. But most of its ingredients have been familiar entities, like the Gamow vectors, the Lippmann-Schwinger (in- and out-plane wave) kets, the Breit-Wigner (Lorentzian) resonance amplitude, the analytically continued S-matrix, and its resonance poles. However, there are inconsistencies and problems with these ingredients: exponential catastrophe, deviations from the exponential law, causality, and recently the ambiguity of the mass and width definition for relativistic resonances. To overcome these problems the above entities will be appropriately defined (as mathematical idealizations). For this purpose we change just one axiom (Hilbert space and/or asymptotic completeness) to a new axiom which distinguishes between (in-)states and (out)observables using Hardy spaces. Then we obtain a consistent quantum theory of scattering and decay which has the Weisskopf-Wigner methods of standard textbooks as an approximation. But it also leads to time-asymmetric semigroup evolution in place of the usual, reversible, unitary group evolution. This, however, can be interpreted as causality for the Born probabilities. Thus we obtain a theoretical framework for the resonance and decay phenomena which is a natural extension of traditional quantum mechanics and possesses the same arrow-of-time as classical electrodynamics. When extended to the relativistic domain, it provides an unambiguous definition for the mass and width of the Z-boson and other relativistic resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoniou, I. (1992). Proceedings 2nd International Wigner Symposium, Goslar 1991, H.-D. Doebner et al., eds., World Scientific, Singapore.

    Google Scholar 

  • Antoniou, I., Gadella, M., and Pronko, G. P. (1998). Journal of Mathematical Physics 39, 2459.

    Google Scholar 

  • Antoniou, I., Melnikov, Y., and Yarevski, E. (2001). Chaos, Solitons and Fractals, 12, 2683.

    Google Scholar 

  • Antoniou, I. and Prigogine, I. (1993). Physica A 192, 443.

    Google Scholar 

  • Baldo, M., Ferreira, L. S., and Streit, L. (1987). Nuclear Physics A 467, 44.

    Google Scholar 

  • Balslev, E. (1984). In Resonances—Models and Phenomena, S. Albeverio, L. Ferreira, and L. Streit, eds. Lecture Notes in Physics, Vol. 211, Springer-Verlag, Berlin, p. 27.

    Google Scholar 

  • Baumgartel, H. (1976). Math. Nachr.75, 133and references thereof.

    Google Scholar 

  • Bohm, A. (1978). Lett. Math. Phys. 3, 455.

    Google Scholar 

  • Bohm, A. (1979). Quantum Mechanics—Foundations and Applications, Springer-Verlag, New York.

    Google Scholar 

  • Bohm, A. (1981). Journal of Mathematical Physics 22, 2813.

    Google Scholar 

  • Bohm, A. (1994). Quantum Mechanics—Foundations and Applications, 3rd edn., Springer, New York.

    Google Scholar 

  • Bohm, A. (1999). Physical Review A 60, 861.

    Google Scholar 

  • Bohm, A. (2003). Fortshritte der Physik 51, 551–568, 569–603, 569–634.

    Google Scholar 

  • Bohm, A., Loewe, M., Maxson, S., Patuleanu, P., Puntmann, C., and Gadella, M. (1997). Journal of Mathematical Physics 38, 1.

    Google Scholar 

  • Bohm, A., Maxson, S. Loewe, M., and Gadella, M. (1997). Physica A 236, 485.

    Google Scholar 

  • Bollini, C. G., Civitarese, O., De Paoli, A. L., and Rocca, M. C. (1996). Journal of Mathematical Physics 37, 4235.

    Google Scholar 

  • Brandas, E. (1986). The method of complex scaling, International Journal of Quantum Chemistry S20, 119.

    Google Scholar 

  • Cohen-Tannoudji, C., Diu, B., and Laloe, F. (1977). Quantum Mechanics, Vol. II, Wiley, New York, pp. 1345, 1353–1354.

    Google Scholar 

  • Duren, P. L. (1970). Theory of H p Spaces, Academic Press, New York.

    Google Scholar 

  • Erdély, A. et al. (1954). Tables of Integral Transforms (Bateman Manuscript Project), McGraw-Hill, New York, Vol. 1, Sect. 32, Eq. (3).

    Google Scholar 

  • Fermi, E. (1932). Reviews of Modern Physics 4, 87.

    Google Scholar 

  • Fermi, E. (1950). Nuclear Physics, University of Chicago Press.

  • Feynman, R. P. (1948). Reviews of Modern Physics 20, 369[in particular pp. 372 and 379]

    Google Scholar 

  • Ferreira, L. S. (1989). In Resonances, E. Brandas et al., eds., Lecture Notes in Physics, Vol. 352, Springer-Verlag, Berlin, p. 201.

    Google Scholar 

  • Gadella, M. (1983). Journal of Mathematical Physics 24, 1462.

    Google Scholar 

  • Gadella, M. (1997). International Journal of Theoretical Physics 36, 2271.

    Google Scholar 

  • Gamow, G. (1928). Zeitschrift für Physik 51, 204.

    Google Scholar 

  • Gell-Mann, M. and Hartle, J. B. (1994). In Physical Origins of Time Asymmetry, J. J. Halliwell, et al., eds., Cambridge University, Cambridge.

    Google Scholar 

  • Gell-Mann, M. and Hartle, J. B. (1995). University of California at Santa Barbara, Report No. UCSBTH-95-28, LANL Archives, gr-qc/9509054 and references thereof.

  • Goldberger, M. L. and Watson, K. M. (1964). Collision Theory, chap. 8, Wiley, New York.

    Google Scholar 

  • Haag, R. (1990). Communication in Mathematical Physics 132, 245.

    Google Scholar 

  • Haag, R. (1997). Lectures at the Max Born Symposium on “Quantum Future,” Przieka.

  • Hegerfeldt, G. C. (1994). Physical Review Letters 72, 596.

    Google Scholar 

  • Khalfin, L. A. (1957). Soviet Physics-Doklady 2, 340-344.

    Google Scholar 

  • Khalfin, L. A. (1958). Soviet Physics-JETP 6, 1053-1063.

    Google Scholar 

  • Kielanowski, P. (2003). Relativistic gamow vectors. International Journal of Theoretical Physics 42, 2339-2355.

    Google Scholar 

  • Kukulin, V. I., Krasnopolsky, V. M., and Horacek, J. (1989). Theory of Resonances, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Lee, T. D. (1981). Particle Physics and Introduction to Field Theory, chap. 13, Harwood Academic, New York.

    Google Scholar 

  • Lee, T. D., Oehme, R., and Yang, C. N. (1957). Physical Review 105, 340.

    Google Scholar 

  • Levy, M. (1959). Nuovo Cimento 13, 115.

    Google Scholar 

  • Merzbacher, E. (1970). Quantum Mechanics, chap. 18, Wiley, New York.

    Google Scholar 

  • Nathan, A. M., Garvey, G. T., Paul, P., and Warburton, E. K. (1975). Physical Review Letters 35, 1137.

    Google Scholar 

  • Newton, R. G. (1982). Scattering Theory of Waves and Particles, 2nd edn., Springer-Verlag, Berlin. [in particular chap. 7]

    Google Scholar 

  • Particle Data Group (2002). Physical Review D: Particles and Fields 66, 01001-01001.

    Google Scholar 

  • Reed, M. and Simon, B. (1978). Methods of Modern Mathematics III, IV, Academic Press, New York.

    Google Scholar 

  • Reinhardt, W. P. (1982). Ann. Rev. Phys. Chem. 33, 223.

    Google Scholar 

  • Siegert, A. F. (1939). Physical Review 56, 750.

    Google Scholar 

  • Simon, B. (1978). International Journal of Quantum Chemistry 14, 529.

    Google Scholar 

  • Simon, B. (1979). Physics Letters 71A, 211.

    Google Scholar 

  • Thomson, J. J. (1884). Proc. London Math. Soc. 15, 197.

    Google Scholar 

  • Tolstikhin, O. et al., (1998). Physical Review A 58, 207.

    Google Scholar 

  • van Kampen, N. (2002). Proceedings of the XXI Solvay Conference 1999. Advances in Chemical Physics 122, 301.

    Google Scholar 

  • Vertse, T., et al., (1989). In Resonances, E. Brandas et al., eds., Lecture Notes in Physics, Vol. 352, Springer-Verlag, Berlin, p. 174.

    Google Scholar 

  • von Brentano, P. (1996). Physics Reports 264, 57, and references thereof.

    Google Scholar 

  • Weinberg, S. (1995). The Quantum Theory of Fields, Vol. 1, Chap. 3, Cambridge University Press, Cambridge.

    Google Scholar 

  • Weisskopf, V. and Wigner, E. P. (1930). Zeitschrift für Physik 63, 54

    Google Scholar 

  • Weisskopf, V. and Wigner, E. P. (1930). Zeitschrift für Physik 65, 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohm, A.R. Time Asymmetry and Quantum Theory of Resonances and Decay. International Journal of Theoretical Physics 42, 2317–2338 (2003). https://doi.org/10.1023/B:IJTP.0000005960.42318.f2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000005960.42318.f2

Navigation