Skip to main content
Log in

New Aspects in Physics on Gel'fand Triplets

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

New observations in Gel'fand triplets are studied. An interesting one is vortex phenomena that stem from zero energy solutions of two-dimensional Schrödinger equations with central potentials V(ρ) ∝ ρr2 = x 2 + y 2 and r ≠ −2), which are eigenstates of conjugate spaces of Gel'fand triplets. The zero energy solutions for all the potentials V(ρ) are shown to have the same structure with infinite degeneracy by making use of the conformal transformation ξα = z α with z = x + iy. The infinite degeneracy is observed as variety of vortex patterns in real physical phenomena. Some simple vortex patterns such as vortex lines and vortex lattices are presented. Such a new freedom on the Gel'fand triplets can be treated in a statistical mechanics. In the theory a new entropy being different from the so-called Boltzmann entropy appears. Transitions between the two entropies occur in thermal nonequilibrium phenomena, where energy emissions are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balazs, N. L. and Voros, A. (1990). Annuals of Physics 199, 123.

    Google Scholar 

  • Barton, G. (1986). Annuals of Physics 166, 322.

    Google Scholar 

  • Batchelor, G. K. (1967). An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bialynicki-Birula, I., Bialynicka-Birula, Z., and śliwa, C. (2000). Physical Review A 61, 032110.

    Google Scholar 

  • Blatter, G. et al. (1994). Review of Modular Physics 66, 1125.

    Google Scholar 

  • Bohm, A and Gadella, M. (1989). Dirac Kets, Gamow Vectors and Gel'fand Triplets Vol. 348, Springer, New York, Lecture Notes in Physics.

    Google Scholar 

  • Bohm, D. and Vigier, J. P. (1954). Physical Review 96, 208

    Google Scholar 

  • Bohm, D. and Vigier, J. P. (1958). Physical Review 109, 1882.

    Google Scholar 

  • Bohm, D. (1952). Physical Review 85, 166, 180

    Google Scholar 

  • Bohm, D. (1953). Physical Review 89, 458.

    Google Scholar 

  • Briet, P., Combes, J. M., and Duclos, P. (1987). Communications in Partial Differential Equations 12, 201.

    Google Scholar 

  • Castagnino, M., Diener, R., Lara, L., and Puccini, G. (1997) International Journal of Theoretical Physics 36, 2349.

    Google Scholar 

  • Crabtree, G. W. and Nelson, D. R. (1997). Physics Today 50, (4), 38.

    Google Scholar 

  • de Broglie, L. (1930). Introduction á l'étude de la Mécanique ondulatoire, Hermann, Paris.

    Google Scholar 

  • Dirac, P. A. M. (1951). Proceedings of the Royal Society of London A 209, 291

    Google Scholar 

  • Dirac, P. A. M. (1952). Proceedings of the Royal Society of London A 212, 330

    Google Scholar 

  • Dirac, P. A. M. (1954). Proceedings of the Royal Society of London A 223, 438.

    Google Scholar 

  • Fine, K. S. et al. (1995). Physical Review Letters 75, 3277.

    Google Scholar 

  • Fitzgerald, R. et al. (2000). Physics Today 55(8), 19.

    Google Scholar 

  • Ghosh, S. K. and Deb, B. M. (1982). Physical Reports 92, 1.

    Google Scholar 

  • Hirschfelder, J. O. (1977). Journal of Chemical Physics 67, 5477.

    Google Scholar 

  • Hirschfelder, J. O., Christoph, A. C., and Palke.W. E. (1974). Journal of Chemical Physics 61, 5435.

    Google Scholar 

  • Hirschfelder, J. O., Goebel, C. J., and Bruch, L. W. (1974). Journal of Chemical Physics 61, 5456.

    Google Scholar 

  • Hirschfelder, J. O. and Tang, K. T. (1976). Journal of Chemical Physics 64, 760

    Google Scholar 

  • Hirschfelder, J. O. and Tang, K. T. (1976). Journal of Chemical Physics 65, 470.

    Google Scholar 

  • Ito, K. et al. (2001). Japanese Journal of Applied Physics 40A, 2558.

    Google Scholar 

  • Kennard, E. H. (1928). Physical Review 31, 876.

    Google Scholar 

  • Kiwamoto, Y. et al. (1999). Journal of Physics Society of Japan (Letters) 68, 3766.

    Google Scholar 

  • Kiwamoto, Y. et al. (2000). Physical Review Letters 85, 3173.

    Google Scholar 

  • Kobayashi, T. (in press). Vortex Lattices in Quantum Mechanics Phisica A. (cond-mat/0105237).

  • Kobayashi, T. and Shimbori, T. (2000). Statistical Mechanics for States With Complex Eigenvalues and Quasi-Stable Semiclassical Systems Preprint cond-mat/0005237.

  • Kobayashi, T. and Shimbori, T. (2000b). Physical Review Letters 280A, 31.

    Google Scholar 

  • Kobayashi, T. and Shimbori, T. (2001a). Physical Review E 63, 056101.

    Google Scholar 

  • Kobayashi, T. and Shimbori, T. (2001b). Zero Energy Solutions and Vortices in Schrödinger Equations, Preprint cond-mat/0103209.

  • Lamb, H. (1932). Hydrodynamics, 6th edn., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M. (1987). Fluid Mechanics, 2nd eds., Pergamon, Oxford.

    Google Scholar 

  • Madelung, E. (1926). Zeitschrift fur Physics 40, 322.

    Google Scholar 

  • Madison, K. W. et al. (2000). Physical Review Letters 84, 806.

    Google Scholar 

  • Marago, O. M. et al. (2000). Physical Review Letters 84, 2056.

    Google Scholar 

  • Matthews, R. M. et al. (1999). Physical Review Letters 83, 2498.

    Google Scholar 

  • Raman, C. et al. (1999). Physical Review Letters 83, 2502.

    Google Scholar 

  • Saffman, P. G. (1992). Vortex Dynamics, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Schecter, D. A. and Dubin, H. E. (1999). Physical Review Letters 83, 2191.

    Google Scholar 

  • Schönberg, M. (1954). Nuovo Cimento 12, 103.

    Google Scholar 

  • Shimbori, T. (2000). Physical Review Letters 273A, 37.

    Google Scholar 

  • Shimbori, T. and Kobayashi, T. (2000a). Nuovo Cimento 115B, 325.

    Google Scholar 

  • Shimbori, T. and Kobayashi, T. (2000b). Journal of Physics 33A, 7637.

    Google Scholar 

  • Shimbori, T. and Kobayashi, T. (2001). Physical Letters B 501, 245

    Google Scholar 

  • Takabayasi, T. (1952). Progression Theoritical Physics 8, 143

    Google Scholar 

  • Takabayasi, T. (1953). Progression Theoritical Physics 9, 187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T. New Aspects in Physics on Gel'fand Triplets. International Journal of Theoretical Physics 42, 2265–2283 (2003). https://doi.org/10.1023/B:IJTP.0000005958.57221.3f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000005958.57221.3f

Navigation