Skip to main content
Log in

Emissivity Measurements on Metallic Surfaces with Various Degrees of Roughness: A Comparison of Laser Polarimetry and Integrating Sphere Reflectometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Both integrating sphere reflectometry (ISR) as well as laser polarimetry have their advantages and limitations in their ability to determine the normal spectral emissivity of metallic samples. Laser polarimetry has been used for years to obtain normal spectral emissivity measurements on pulse-heated materials. The method is based on the Fresnel equations, which describe reflection and refraction at an ideally smooth interface between two isotropic media. However, polarimetry is frequently used with surfaces that clearly deviate from this ideal condition. Questions arise with respect to the applicability of the simple Fresnel equations to non-specular surfaces. On the other hand, reflectometry utilizing integrating spheres provides a measurement of the hemispherical spectral reflectance, from which the normal spectral emissivity can be derived. ISR provides data on spectral-normal-hemispherical reflectance and, hence, normal spectral emissivity for a variety of surfaces. However, the resulting errors are minimal when both the sample and the reference have a similar bidirectional reflectance distribution function (BRDF). In an effort to explore the limits of polarimetry in terms of surface roughness, room temperature measurements on the same samples with various degrees of roughness were performed using both ISR and a laser polarimeter. In this paper the two methods are briefly described and the results of the comparison are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERNCES

  1. F. Righini, G. C. Bussolini, and A. Rosso, Proc. TEMPMEKO 96, P. Marcino, ed. (Levrotto and Bella, Torino, 1997), pp. 489-492.

    Google Scholar 

  2. A. Cezairliyan, J. Res. Nat. Bur. Stand. C 75(1) (1971).

  3. G. Pottlacher and A. Seifter, Int. J. Thermophys. 23:1281(2002).

    Google Scholar 

  4. K. Boboridis, Int. J. Thermophys. 23:277(2002).

    Google Scholar 

  5. A. W. Obst, K. R. Alrick, K. Boboridis, W. T. Buttler, B. R. Marshall, J. R. Payton, and M. D. Wilke, Int. J. Thermophys. 23:1259(2002).

    Google Scholar 

  6. I. Egry, A. Diefenbach, W. Dreier, and J. Piller, Int. J. Thermophys. 22:569(2001).

    Google Scholar 

  7. K. Boboridis and A. W. Obst, in Temperature, Its Measurement and Control in Science and Industry, Vol. 7, D. C. Ripple, ed. (AIP, New York, 2003).

    Google Scholar 

  8. D. P. DeWitt and H. Kunz, in Temperature, Its Measurement and Control in Science and Industry, Vol. 4, Part 1, J. F. Schooley, ed. (AIP, New York, 1972), p. 599.

    Google Scholar 

  9. D. Partouche-Sebban, D. B. Holtkamp, R. R. Bartsch, H. Lee, and G. G. Schmitt, Rev. Sci. Intrum. 72:3008(2001).

    Google Scholar 

  10. D. Partouche-Sebban and E. Blanco, presented at Fifth Int. Symp. on behavior of Dense Media under High Dynamic Pressures, Saint-Malo, France, June 23–27, 2003.

  11. P. Poulsen and D. E. Hare, “Temperature and Wavelength Dependent Emissivity of a Shocked Surface: A First Experiment', ” Lawrence Livermore National Laboratory Report, UCRL-JC-146809 (2002).

  12. M. Born and E. Wolf, in Principles of Optics, 7th edn. (Cambridge University Press, 1999).

  13. A. Seifter, Ph.D. thesis (TU-Graz, 2001), http://iep.tu-graz.ac.at/thermo/publications. html.

  14. J. A. Jacquez and H. F. Kuppenheim, J. Opt. Soc. Am. 45:460(1955).

    Google Scholar 

  15. A. H. Taylor, J. Opt. Soc. Am. 25:51(1935).

    Google Scholar 

  16. F. J. J. Clarke and J. A. Compton, COLOR res. a. application 11:253(1986).

    Google Scholar 

  17. A. Ross and C. G. Ribbing, Appl. Opt. 27:3833(1988).

    Google Scholar 

  18. R. M. A. Azzam, Opt. Acta 29:685(1982).

    Google Scholar 

  19. R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and F. G. Grosz, Rev. Sci. Instrum. 59:84(1988).

    Google Scholar 

  20. S. Krishnan, J. Opt. Soc. Am. A 9:1615(1992).

    Google Scholar 

  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, California, 1998).

    Google Scholar 

  22. American Society for Testing and Materials, ASTM E-429-78 (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seifter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifter, A., Boboridis, K. & Obst, A.W. Emissivity Measurements on Metallic Surfaces with Various Degrees of Roughness: A Comparison of Laser Polarimetry and Integrating Sphere Reflectometry. International Journal of Thermophysics 25, 547–560 (2004). https://doi.org/10.1023/B:IJOT.0000028489.81327.b7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000028489.81327.b7

Navigation