Skip to main content
Log in

A Fundamental Equation for Calculation of the Thermodynamic Properties of Ethanol

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A formulation for the thermodynamic properties of ethanol (C2H5OH) in the liquid, vapor, and saturation states is presented. The formulation is valid for single-phase and saturation states from 250 to 650 K at pressures up to 280 MPa. The formulation includes a fundamental equation and ancillary functions for the estimation of saturation properties. The experimental data used to determine the fundamental equation include pressure-density-temperature, ideal gas heat capacity, speed of sound, and vapor pressure. Saturation values computed from the ancillary functions were used to ensure thermodynamic consistency at the vapor-liquid phase boundary. Comparisons between experimental data and values computed using the fundamental equation are given to verify the uncertainties in the calculated properties. The formulation presented may be used to compute densities to within ±0.2%, heat capacities to within ±3%, and speed of sound to within ±1%. Saturation values of the vapor pressure and saturation densities are represented to within ±0.5%, except near the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Bich, M. Ramsdorf, and G. Opel, Z. Phys. Chem. (Leipzig) 265:401(1984).

    Google Scholar 

  2. I. F. Golubev, T. N. Vasil'kovskaya, and V. S. Zolin, Inzh.-Fiz. Zh. 38:668(1980).

    Google Scholar 

  3. A. C. Gupta and R. W. Hanks, Thermochim. Acta 21:143(1977).

    Google Scholar 

  4. S. Hawley, J. Allegra, and G. Holton, J. Acoust. Soc. Am. 47:137(1970).

    Google Scholar 

  5. T. Hilczer and R. Goc, Bull. Soc. Sci. Lett. Poznan 16:201(1961).

    Google Scholar 

  6. J. Hu, K. Tamura, and S. Murakami, Fluid Phase Equilib. 131:201(1977).

    Google Scholar 

  7. D. D. Kalafati, D. S. Rasskazov, and E. K. Petrov, Teploenergetika 14:77(1967).

    Google Scholar 

  8. H. Kubota, Y. Tanaka, and T. Makita, Int. J. Thermophys. 8:47(1987).

    Google Scholar 

  9. H. Y. Lo and L. I. Stiel, Ind. Eng. Chem. Fundam. 8:713(1969).

    Google Scholar 

  10. P. S. Nikam, L. N. Shirsat, and M. Hasan, J. Chem. Eng. Data 43:732(1998).

    Google Scholar 

  11. S. Ozawa, O. Noriyuki, Y. Masashi, S. Honmo, and Y. Ogino, J. Chem. Thermodyn. 12:229(1980).

    Google Scholar 

  12. P. Sauermann, K. Holzapfel, J. Oprzynski, F. Kohler, W. Poot, and T. W. de Loos, Fluid Phase Equilib. 112:249(1995).

    Google Scholar 

  13. T. F. Sun, J. A. Schouten, P. J. Kortbeek, and S. N. Biswas, Phys. Chem. Liq. 21:231(1989).

    Google Scholar 

  14. Y. Takiguchi and M. Uematsu, Int. J. Thermophys. 16:205(1995).

    Google Scholar 

  15. G. Tammann and A. Ruhenbeck, Ann. Physik 13:63(1932).

    Google Scholar 

  16. Y. Tanaka, T. Yamamoto, Y. Satomi, H. Kubota, and T. Makita, Rev. Phys. Chem. Jpn. 47:12(1977).

    Google Scholar 

  17. C. Tu, H. Ku, W. Wang, and Y. Chou, J. Chem. Eng. Data 46:317(2001).

    Google Scholar 

  18. K. S. Wilson, D. D. Lindley, W. B. Kay, and H. C. Hershey, J. Chem. Eng. Data 29:243(1984).

    Google Scholar 

  19. J. F. Counsell, J. O. Fenwick, and E. B. Lees, J. Chem. Thermodyn. 2:367(1970).

    Google Scholar 

  20. J. Q. Dong, R. S. Lin, and W. H. Yen, Can. J. Chem. 66:783(1988).

    Google Scholar 

  21. M. J. Pedersen, B. K Webster, and H. C. Hershey, J. Chem. Thermodyn. 7:1107(1975).

    Google Scholar 

  22. G. C. Sinke and T. De Vries, J. Am. Chem. Soc. 75:1815(1953).

    Google Scholar 

  23. E. Stromsoe, H. G. Ronne, A. L. Lydersen, and T. F. Sun, J. Chem. Eng. Data 15:286(1970).

    Google Scholar 

  24. E. H. Carnevale and T. A. Litovitz, J. Acoust. Soc. Am. 27:547(1955).

    Google Scholar 

  25. H. F. Eden and E. G. Richardson, Acustica 10:309(1960).

    Google Scholar 

  26. W. Wilson and D. Bradley, J. Acoust. Soc. Am. 36:333(1964).

    Google Scholar 

  27. D. Ambrose and C. H. S. Sprake, J. Chem. Thermodyn. 2:631(1970).

    Google Scholar 

  28. D. Ambrose, C. H. S. Sprake, and R. Townsend, J. Chem. Thermodyn. 7:185(1975).

    Google Scholar 

  29. A. Aucejo, S. Loras, R. Munoz, and L. M. Ordonez, Fluid Phase Equilib. 156:173(1999).

    Google Scholar 

  30. K. A. Dulitskaya, Zh. Obshch. Khim. 7:185(1945).

    Google Scholar 

  31. G. Figurski and S. K. Malanowski, Fluid Phase Equilib. 148:161(1998).

    Google Scholar 

  32. J. R. Khurma, O. Muthu, S. Munjal, and B. D. Smith, J. Chem. Eng. Data 28:100(1983).

    Google Scholar 

  33. C. B. Kretschmer and R. Wiebe, J. Am. Chem. Soc. 71:1793(1949).

    Google Scholar 

  34. M. J. Lee and C. H. Hu, Fluid Phase Equilib. 109:83(1995).

    Google Scholar 

  35. A. L. Lydersen and V. Tsochev, Chem. Eng. Tech. 13:125(1990).

    Google Scholar 

  36. K. P. Mishchienko and V. V. Subbotina, Zh. Prikl. Khim. 40:1156(1967).

    Google Scholar 

  37. A. H. N. Mousa, J. Chem. Eng. Jpn. 20:635(1987).

    Google Scholar 

  38. E. F. Fiock, D. C. Ginnings, and W. B. Holton, J. Res. Nat. Bur. Stand. 6:881(1931).

    Google Scholar 

  39. A. Z. Golik, Y. I. Shimanskii, and N. M. Kobiichuk, Ukr. Fiz. Zh. 3:537(1958).

    Google Scholar 

  40. J. L. Hales and J. H. Ellender, J. Chem. Thermodyn. 8:1177(1976).

    Google Scholar 

  41. F. G. Brickwedde, M. Moskow, and J. G. Aston, J. Res. Nat. Bur. Stand. 37:263(1946).

    Google Scholar 

  42. D. Ambrose and J. Walton, Pure Appl. Chem. 61:1395(1989).

    Google Scholar 

  43. T. B. Coplen, J. Phys. Chem. Ref. Data 30:701(2001).

    Google Scholar 

  44. P. J. Mohr and B. N. Taylor, J. Phys. Chem. Ref. Data 28:1713(1999).

    Google Scholar 

  45. R. T Jacobsen, R. B. Stewart, M. Jahangiri, and S. G. Penoncello, Adv. Cryo. Eng. 31:1161(1986).

    Google Scholar 

  46. H. S. Green, Trans. Faraday Soc. 57:2132(1961).

    Google Scholar 

  47. G. M. Barrow, J. Chem. Phys. 20:1739(1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Penoncello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, H.E., Penoncello, S.G. A Fundamental Equation for Calculation of the Thermodynamic Properties of Ethanol. International Journal of Thermophysics 25, 321–335 (2004). https://doi.org/10.1023/B:IJOT.0000028470.49774.14

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000028470.49774.14

Navigation