International Journal of Thermophysics

, Volume 25, Issue 1, pp 187–203 | Cite as

Investigation of the Temperature and Density Dependences of the Effective Pair Potential Parameters Using Variational Theory

  • F. KermanpourEmail author
  • G. A. Parsafar
  • G. A. Mansoori


A variational theory (VT), in which the potential energy of a real system is evaluated relative to the hard-sphere system, has been used to investigate the medium's effects on the pair potential parameters. By adding the medium's effects to the isolated pair potential, the concept of an “effective pair potential” (EPP) has been introduced. The advantage of such a potential (EPP) over the isolated pair potential is that the configurational energy can exactly be written as the sum of all EPP of all pairs available in the system. The parameters of such a pair potential will then show state dependence. The EPP parameters for different dense fluids at various temperatures have been obtained via the VT, and they have been shown to be density independent for densities greater than the Boyle density, ρ B ≃1.8ρ c , (where ρ c is the critical density), while at lower densities the parameters depend on density as well as temperature. For any dense fluid, the depth of the EPP, ε, is found to be larger than its corresponding isolated pair. When the EPP parameters are used to reduce temperature and density, the cut-off parameter, C=d/σ depends only on the reduced density, and this parameter shows a strong principle of corresponding states for different fluids. The resulting expression for the cut-off parameter has then been used to accurately predict the internal energy. Finally, the EPP parameters are compared with those of the average effective pair potential (AEPP) for Ar, to show the importance of the medium effects and the long-range interactions of the AEPP in dense fluids, individually. This comparison shows that the depth parameter of the AEPP is much larger than that of the EPP. Since the long-range interactions are mainly attractive, such a conclusion is reasonable.

average effective pair potential corresponding states variational theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Parsafar, F. Kermanpour, and B. Najafi, J. Phys. Chem. B 103:7287(1999).Google Scholar
  2. 2.
    R. W. Zwanzig, J. Chem. Phys. 22:1420(1954).Google Scholar
  3. 3.
    G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51:4958(1969).Google Scholar
  4. 4.
    G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51:5335(1969).Google Scholar
  5. 5.
    G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51:4967(1969).Google Scholar
  6. 6.
    Y. Rosenfeld, J. Chem. Phys. 73:5760(1980).Google Scholar
  7. 7.
    G. A. Mansoori, in Proc. 7th Symposium on Thermophysical Properties (ASME, New York, 1977), p. 442.Google Scholar
  8. 8.
    Y. Rosenfeld and A. Bara, J. Chem. Phys. 75:427(1981).Google Scholar
  9. 9.
    Y. Rosenfeld, Phys. Rev. A 15:2545(1977).Google Scholar
  10. 10.
    G. I. Kerley, Los Alamos Sci. Lab., Rep. LA-4760(1971).Google Scholar
  11. 11.
    D. Stroud and N. W. Ashcroft, Phys. Rev. B 5:371(1972).Google Scholar
  12. 12.
    I. H. Umar, A. Meyer, M. Watabe, and W. Young, J. Phys. Metal Phys. 4:1691(1974).Google Scholar
  13. 13.
    G. A. Mansoori, C. Jedrzejek, N. J. Shah, and M. Blander, in Chemical Metallurgy— A Tribute to Carl Wagner (The Metallurgical Society of AIME, New York, 1981), p. 233.Google Scholar
  14. 14.
    C. Jedrzejek and G. A. Mansoori, Acta Phys. Pol. A 56:583(1979).Google Scholar
  15. 15.
    C. Jedrzejek and G. A. Mansoori, Acta Phys. Pol. A 57:107(1980).Google Scholar
  16. 16.
    A. Alem and G. A. Mansoori, AIChE J. 30:468(1984)Google Scholar
  17. 17.
    A. Alem and G. A. Mansoori, AIChE J. 30:1984ibid, 475.Google Scholar
  18. 18.
    D. A. McQuarrie, in Statistical Mechanics (Harper Collins, New York, 1975).Google Scholar
  19. 19.
    N. F Carnahan and K. E. Starling, J. Chem. Phys. 51:635(1969).Google Scholar
  20. 20.
    R. T Jacobson and R. B. Stewart, J. Phys. Chem. Ref. Data 18:639(1989).Google Scholar
  21. 21.
    W. Wagner and U. Stezmann, J. Phys. Chem. Ref. Data 20:1061(1991).Google Scholar
  22. 22.
    B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:642(1987).Google Scholar
  23. 23.
    G. A. Mansoori and I. Ali, The Chem. Eng. J. 7:173(1974).Google Scholar
  24. 24.
    L. L. Lee, in Molecular Thermodynamics of Nonideal Fluids (Butterworths, Boston, 1988), p. 219.Google Scholar
  25. 25.
    J. Millat, J. H. Dymond, and C. A. Nieto de Castro, in Transport Properties of Fluids, 1st edn. (Cambridge University Press, 1996), p. 76.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • F. Kermanpour
    • 1
    Email author
  • G. A. Parsafar
    • 2
  • G. A. Mansoori
    • 3
  1. 1.Chemistry GroupUniversity of Bu-Ali SinaHamadanIran
  2. 2.Department of ChemistrySharif University of TechnologyTehranIran
  3. 3.Department of Chemical EngineeringThe University of Illinois at ChicagoChicagoU.S.A

Personalised recommendations