Skip to main content
Log in

Investigation of the Temperature and Density Dependences of the Effective Pair Potential Parameters Using Variational Theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A variational theory (VT), in which the potential energy of a real system is evaluated relative to the hard-sphere system, has been used to investigate the medium's effects on the pair potential parameters. By adding the medium's effects to the isolated pair potential, the concept of an “effective pair potential” (EPP) has been introduced. The advantage of such a potential (EPP) over the isolated pair potential is that the configurational energy can exactly be written as the sum of all EPP of all pairs available in the system. The parameters of such a pair potential will then show state dependence. The EPP parameters for different dense fluids at various temperatures have been obtained via the VT, and they have been shown to be density independent for densities greater than the Boyle density, ρ B ≃1.8ρ c , (where ρ c is the critical density), while at lower densities the parameters depend on density as well as temperature. For any dense fluid, the depth of the EPP, ε, is found to be larger than its corresponding isolated pair. When the EPP parameters are used to reduce temperature and density, the cut-off parameter, C=d/σ depends only on the reduced density, and this parameter shows a strong principle of corresponding states for different fluids. The resulting expression for the cut-off parameter has then been used to accurately predict the internal energy. Finally, the EPP parameters are compared with those of the average effective pair potential (AEPP) for Ar, to show the importance of the medium effects and the long-range interactions of the AEPP in dense fluids, individually. This comparison shows that the depth parameter of the AEPP is much larger than that of the EPP. Since the long-range interactions are mainly attractive, such a conclusion is reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Parsafar, F. Kermanpour, and B. Najafi, J. Phys. Chem. B 103:7287(1999).

    Google Scholar 

  2. R. W. Zwanzig, J. Chem. Phys. 22:1420(1954).

    Google Scholar 

  3. G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51:4958(1969).

    Google Scholar 

  4. G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51:5335(1969).

    Google Scholar 

  5. G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51:4967(1969).

    Google Scholar 

  6. Y. Rosenfeld, J. Chem. Phys. 73:5760(1980).

    Google Scholar 

  7. G. A. Mansoori, in Proc. 7th Symposium on Thermophysical Properties (ASME, New York, 1977), p. 442.

    Google Scholar 

  8. Y. Rosenfeld and A. Bara, J. Chem. Phys. 75:427(1981).

    Google Scholar 

  9. Y. Rosenfeld, Phys. Rev. A 15:2545(1977).

    Google Scholar 

  10. G. I. Kerley, Los Alamos Sci. Lab., Rep. LA-4760(1971).

  11. D. Stroud and N. W. Ashcroft, Phys. Rev. B 5:371(1972).

    Google Scholar 

  12. I. H. Umar, A. Meyer, M. Watabe, and W. Young, J. Phys. Metal Phys. 4:1691(1974).

    Google Scholar 

  13. G. A. Mansoori, C. Jedrzejek, N. J. Shah, and M. Blander, in Chemical Metallurgy— A Tribute to Carl Wagner (The Metallurgical Society of AIME, New York, 1981), p. 233.

    Google Scholar 

  14. C. Jedrzejek and G. A. Mansoori, Acta Phys. Pol. A 56:583(1979).

    Google Scholar 

  15. C. Jedrzejek and G. A. Mansoori, Acta Phys. Pol. A 57:107(1980).

    Google Scholar 

  16. A. Alem and G. A. Mansoori, AIChE J. 30:468(1984)

    Google Scholar 

  17. A. Alem and G. A. Mansoori, AIChE J. 30:1984ibid, 475.

    Google Scholar 

  18. D. A. McQuarrie, in Statistical Mechanics (Harper Collins, New York, 1975).

    Google Scholar 

  19. N. F Carnahan and K. E. Starling, J. Chem. Phys. 51:635(1969).

    Google Scholar 

  20. R. T Jacobson and R. B. Stewart, J. Phys. Chem. Ref. Data 18:639(1989).

    Google Scholar 

  21. W. Wagner and U. Stezmann, J. Phys. Chem. Ref. Data 20:1061(1991).

    Google Scholar 

  22. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:642(1987).

    Google Scholar 

  23. G. A. Mansoori and I. Ali, The Chem. Eng. J. 7:173(1974).

    Google Scholar 

  24. L. L. Lee, in Molecular Thermodynamics of Nonideal Fluids (Butterworths, Boston, 1988), p. 219.

    Google Scholar 

  25. J. Millat, J. H. Dymond, and C. A. Nieto de Castro, in Transport Properties of Fluids, 1st edn. (Cambridge University Press, 1996), p. 76.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kermanpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kermanpour, F., Parsafar, G.A. & Mansoori, G.A. Investigation of the Temperature and Density Dependences of the Effective Pair Potential Parameters Using Variational Theory. International Journal of Thermophysics 25, 187–203 (2004). https://doi.org/10.1023/B:IJOT.0000022334.03940.b2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000022334.03940.b2

Navigation