Skip to main content

Corresponding-States Correlation and Prediction of Third Virial Coefficients for a Wide Range of Substances

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An extended corresponding-states model is developed that is capable of correlating and predicting the third virial coefficients for a wide range of substances. The present method only requires substance-dependent parameters, such as the critical temperature, critical volume, acentric factor, and aspherical factor, which are based on the simple extended corresponding-states principle. Comparisons with experimental data and existing models show that the present model is more general in that it not only is equivalent to the existing method for nonpolar gases, but also can represent the third virial coefficients of polar substances.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. J. O. Hirschfelder, C. F. Curtis and R. B. Bird, in Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  2. K. Kihara, Nippon-Sugaku-Busturigakaishi 17:11(1943).

    Google Scholar 

  3. W. H. Stockmayer, J. Chem. Phys. 9:398(1941).

    Google Scholar 

  4. J. S. Rowlinson, J. Chem. Phys. 19:827(1951).

    Google Scholar 

  5. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 93:2741(1990).

    Google Scholar 

  6. S. J. Boyes and L. A. Weber, J. Chem. Thermodyn. 27:163(1995).

    Google Scholar 

  7. K. A. Gillis, Int. J. Thermophys. 18:73(1997).

    Google Scholar 

  8. A. Yokozeki, H. Sato, and K. Watanabe, Int. J. Thermophys. 19:89(1998).

    Google Scholar 

  9. N. Van Nhu and F. Kohler, Ber. Bunsenges. Phys. Chem. 92:1129(1988).

    Google Scholar 

  10. N. Van Nhu, G. A. Iglesias-Silva, and F. Kohler, Ber. Bunsenges. Phys. Chem. 93:526(1989).

    Google Scholar 

  11. L. A. Weber, Int. J. Thermophys. 15:461(1994).

    Google Scholar 

  12. L. A. Weber, Fluid Phase Equilib. 162:31(1999).

    Google Scholar 

  13. P. L. Chueh and J. M. Prausnitz, AIChE J. 13:896(1967).

    Google Scholar 

  14. G. A. Pope, P. S. Chappelear, and R. Kobayashi, J. Chem. Phys. 59:423(1973).

    Google Scholar 

  15. R. De Santis and B. Grande, AIChE J. 25:931(1979).

    Google Scholar 

  16. A. Bondi, in Physical Properties of Molecular Crystals, Liquids and Glasses (Wiley, New York, 1968).

    Google Scholar 

  17. H. Orbey and J. H. Vera, AIChE J. 29:107(1983).

    Google Scholar 

  18. M. A. Bosse and R. Reich, Chem. Eng. Comm. 66:83(1988).

    Google Scholar 

  19. E. M. Besher and J. Lielmezs, Thermochimica Acta 200:1(1992).

    Google Scholar 

  20. K. S. Pitzer, D. Z. Lippmann, R. F. Curl, C. M. Huggins and D. E. Petersen, J. Am. Chem. Soc. 77:3433(1955).

    Google Scholar 

  21. K. S. Pitzer and R. F. Curl, J. Am. Chem. Soc. 79:2369(1957).

    Google Scholar 

  22. R. F. Curl and K. S. Pitzer, Ind. Eng. Chem. 50:265(1958).

    Google Scholar 

  23. T. W. Leland and P. S. Chappelear, Ind. Eng. Chem. 60(7):15(1968).

    Google Scholar 

  24. H. W. Xiang, J. Phys. Chem. Ref. Data 30:1161(2001).

    Google Scholar 

  25. H. W. Xiang, Int. J. Thermophys. 22:919(2001).

    Google Scholar 

  26. H. W. Xiang, Chem. Eng. Sci. 57:1439(2002).

    Google Scholar 

  27. J. H. Dymond and E. B. Smith, in The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford, 1980).

    Google Scholar 

  28. R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 26:383(1994).

    Google Scholar 

  29. Ch. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28:779(1999).

    Google Scholar 

  30. J. C. Holste, K. R. Hall, P. T. Eubank, G. Esper, M. Q. Watson, W. Warowny, D. M. Bailey, J. G. Young and M. T. Bellomy, J. Chem. Thermodyn. 19:1233(1987).

    Google Scholar 

  31. B. V. Mallu, G. Natarajan, and D. S. Viswanath, J. Chem. Thermodyn. 21:989(1989).

    Google Scholar 

  32. P. J. McElroy, R. Battino, and M. K. Dowd, J. Chem. Thermodyn. 21:1287(1989).

    Google Scholar 

  33. W. Duschek, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 22:827(1990).

    Google Scholar 

  34. T. Tamatsu, T. Sato, H. Sato, and K. Watanabe, Int. J. Thermophys. 13:985(1992).

    Google Scholar 

  35. S. Nakamura, K. Fujiwara, and M. Noguchi, J. Chem. Eng. Data 42:334(1997).

    Google Scholar 

  36. D. R. Defibaugh, G. Morrison, and L. A. Weber, J. Chem. Eng. Data 39:333(1994).

    Google Scholar 

  37. Y. D. Fu, L. Z. Han, and M. S. Zhu, Fluid Phase Equilib. 111:273(1995).

    Google Scholar 

  38. H. L. Zhang, H. Sato, and K. Watanabe, J. Chem. Eng. Data 41:1401(1996).

    Google Scholar 

  39. A. P. Kuznetsov and L. V. Los, Kholod. Tekh. Tekhnol. 14:64(1972).

    Google Scholar 

  40. T. Sato, H. Sato, and K. Watanabe, J. Chem. Eng. Data 39:851(1994).

    Google Scholar 

  41. G. Adam and B. Schramm, Ber. Bunsen-Ges. Phys. Chem. 81:442(1977).

    Google Scholar 

  42. S. Glowak, Pol. J. Chem. 64:699(1994).

    Google Scholar 

  43. L. Haar, J. S. Gallagher, and G. S. Kell, in NBS/NRC Stream Tables (Hemisphere, Washington, 1984).

    Google Scholar 

  44. P. G. Hill and R. D. C. MacMillan, Ind. Eng. Chem. Res. 27:874(1988).

    Google Scholar 

  45. P. T. Eubank, L. L. Joffrion, M. R. Patel and W. Warowny, J. Chem. Thermodyn. 20:1009(1988).

    Google Scholar 

  46. E. Bich, R. Pietsch, and G. Opel, Z. Phys. Chem. 265:396(1984).

    Google Scholar 

  47. A. N. Shakhverdiev, Y. M. Naziev, and D. T. Safarov, Teplofiz. Vys. Temp. 31:369(1993).

    Google Scholar 

  48. G. Olf, A. Schnitzler, and J. Gaube, Fluid Phase Equilib. 49:49(1989).

    Google Scholar 

  49. G. S. Kell and G. E. McLaurin, J. Chem. Phys. 51:4345(1969).

    Google Scholar 

  50. R. Tillner-Roth and A. Yokozeki, J. Phys. Chem. Ref. Data 26:1273(1997).

    Google Scholar 

  51. E. W. Lemmon and R. T Jacobsen, J. Phys. Chem. Ref. Data 29:521(2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Xiang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, D.X., Xiang, H.W. Corresponding-States Correlation and Prediction of Third Virial Coefficients for a Wide Range of Substances. International Journal of Thermophysics 24, 1667–1680 (2003). https://doi.org/10.1023/B:IJOT.0000004098.98614.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000004098.98614.38

  • corresponding-states principle
  • critical parameters
  • polar molecules
  • thermodynamic properties
  • virial coefficients
  • virial equation