Skip to main content
Log in

Body Mass Estimates for Eocene Eosimiid and Amphipithecid Primates Using Prosimian and Anthropoid Scaling Models

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

We estimated body masses for middle to late Eocene East Asian eosimiids and amphipithecids from the crown areas of cheek teeth. First, we calculated body mass estimate equations via an extant primate sample of 11 prosimian and 30 anthropoid species, and compared the reliability of the resulting body mass estimate regressions. M 1–2 and M 1–2 are better body mass estimators, especially for fossils with few samples, because of their low intraspecific variations in dimensions. Moreover, body masses derived from M 1–2 tend to indicate lower estimate error than those from other cheek teeth. The relationships between tooth crown areas and body mass differ between prosimians and anthropoids; the estimated body mass from crown area of P 4 or any molar will be larger if anthropoids, instead of prosimians, are used as a reference taxon. Second, We applied the regressions to the fossil primates. The estimated body masses in kg are as follows: Eosimias centennicus, 0.16; E. sinensis, 0.14; Eosimiidae indet. from the Pondaung Formation, ≤0.41; Bahinia pondaungensis, 0.57; Myanmarpithecus yarshensis, 1.8; Amphipithecus mogaungensis, 6.8; Pondaungia cotteri, 5.9; Pondaungia savagei, 8.8; Siamopithecus eocaenus, 5.9. Eosimiids fit the prosimian model better than the anthropoid model. Amphipithecids do not fit one model particularly better than the other, as the estimates vary considerably according to the tooth used and the reference taxon. The anthropoid model gives smaller differences between upper- and lower-molar-based body mass estimates, but premolars are relatively much smaller in amphipithecids than in extant prosimians and anthropoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Ba Maw, Ciochon, R. L., and Savage, D. E. (1979). Late Eocene of Burma yields earliest anthropoid primate, Pondaungia cotteri. Nature 282: 65-67.

    Google Scholar 

  • Beard, K. C., Qi, T., Dawson, M. R., Wang, B., and Li, C. (1994). A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China. Nature 368: 604-609.

    Google Scholar 

  • Beard, K. C., Tong, Y., Dawson, M. R., Wang, J., and Huang, X. (1996). Earliest complete dentition of an anthropoid primate from the late middle Eocene of Shanxi Province, China. Science 272: 82-85.

    Google Scholar 

  • Chaimanee, Y., Suteethorn, V., Jaeger, J.-J., and Ducrocq, S. (1997). A new late Eocene anthropoid primate from Thailand. Nature 385: 429-431.

    Google Scholar 

  • Chaimanee, Y., Tin Thein, Ducrocq, S., Aung Naing Soe, Benammi, M., Than Tun, Thit Lwin, San Wai, and Jaeger, J.-J. (2000). A lower jaw of Pondaungia cotteri from the late middle Eocene Pondaung Formation (Myanmar) confirms its anthropoid status. Proc. Natl. Acad. Sci. U.S.A. 97: 4102-4105.

    Google Scholar 

  • Ciochon, R. L., Gingerich, P. D., Gunnell, G. F., and Simons, E. L. (2001). Primate postcrania from the late middle Eocene of Myanmar. Proc. Natl. Acad. Sci. U.S.A. 98: 7672-7677.

    Google Scholar 

  • Ciochon, R. L., and Gunnell, G. F. (2002). Eocene primates from Myanmar: Historical perspectives on the origin of Anthropoidea. Evol. Anthropol. 11: 156-168.

    Google Scholar 

  • Ciochon, R. L., and Holroyd, P. A. (1994). The Asian origin of Anthropoidea revisited. In Fleagle, J. G., and Kay, R. F. (eds.), Anthropoid Origins, Plenum, New York, pp. 143-162.

    Google Scholar 

  • Clarke, M. R. B. (1980). The reduced major axis of bivariate sample. Biometrika 2: 441-446.

    Google Scholar 

  • Colbert, E. H. (1937). A new primate from the upper Eocene Pondaung Formation of Burma. Am. Museum Novitates 951: 1-18.

    Google Scholar 

  • Conroy, G. C. (1987). Problems of body-weight estimation in fossil primates. Int. J. Primatol. 8: 115-135.

    Google Scholar 

  • Dagosto, M., and Terranova, C. J. (1992). Estimating the body size of Eocene primates: A comparison of results from dental and postcranial variables. Int. J. Primatol. 15: 307-344.

    Google Scholar 

  • Damuth, J., and MacFadden, B. J. (eds.) (1990). Body Size in Mammalian Paleobiology: Estimation and Biological Implications, Cambridge University Press, New York, p. 397.

    Google Scholar 

  • Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G., and Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): Estimation and scaling in extinct and extant taxa. Am. Museum Nat. Hist. Anthropol. Pap. 83: 1-159.

    Google Scholar 

  • Ducrocq, S. (1999). Siamopithecus eocaenus, a late Eocene anthropoid primate from Thailand: Its contribution to the evolution of anthropoids in Southeast Asia. J. Hum. Evol. 36: 613-635.

    Google Scholar 

  • Ducrocq, S. (2001). Paleogene anthropoid primates from Africa and Asia: New phylogenetical evidences. C. R. Acad. Sci. (Paris) 332: 351-356.

    Google Scholar 

  • Fleagle, J. G. (1999). Primate Adaptation and Evolution, 2nd edn., Academic Press, San Diego, CA, p. 596.

    Google Scholar 

  • Ford, S. M., and Davis, L. C. (1992). Systematics and body size: Implications for feeding adaptations in New World monkeys. Am. J. Phys. Anthropol. 88: 415-468.

    Google Scholar 

  • Gebo, D. L., Gunnell, G. F., Ciochon, R. L., Takai, M., Tsubamoto, T., and Egi, N. (2002). New Eosimiid from Myanmar. J. Hum. Evol. 43: 549-553.

    Google Scholar 

  • Gingerich, P. D., and Ryan, A. S. (1979). Dental and cranial variation in living Indriidae. Primates 20: 141-159.

    Google Scholar 

  • Gingerich, P. D., and Schoeninger, M. J. (1979). Patterns of tooth size valiability in the dentition of primates. Am. J. Phys. Anthropol. 51: 457-466.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am. J. Phys. Anthropol. 58: 81-100.

    Google Scholar 

  • Gunnell, G. F., Ciochon, R. L., Gingerich, P. D., and Holroyd, P. A. (2002). New assessment of Pondaungia and Amphipithecus (Primates) from the late middle Eocene of Myanmar, with a comment on “Amphipithecidae.” Contrib. Museum Paleontol. Univ. Mich. 30: 337-372.

    Google Scholar 

  • Gunnell, G. F., and Miller, E. R. (2001). Origin of Anthropoidea: Dental evidence and recognition of early anthropoids in the fossil record, with comments on the Asian anthropoid radiation. Am. J. Phys. Anthropol. 114: 177-191.

    Google Scholar 

  • Jaeger, J.-J., Aung Naing Soe, Aye ko Aung, Benammi, M., Chiamanee, Y., Ducrocq, R.-M., Than Tun, Tin Thein, and Ducrocq, S. (1998). New Myanmar middle Eocene anthropoids. An Asian origin for catarrhines? C. R. Acad. Sci. (Paris) 321: 953-959.

    Google Scholar 

  • Jaeger, J.-J., Tin Thein, Benammi, M., Aung Naing Soe, Thit Lwin, Than Tun, San Wai, and Ducrocq, S. (1999). A new primate from the middle Eocene of Myanmar and the Asian early origin of anthropoids. Science 286: 528-530.

    Google Scholar 

  • Jungers, W. L. (ed.) (1985). Size and Scaling in Primate Biology, Plenum, New York, p. 491.

    Google Scholar 

  • Jungers, W. L. (1990). Problems and methods in reconstructing body size in fossil primates. In Damuth, J., and MacFadden, B. (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, Cambridge University Press, Cambridge, UK, pp. 103-118.

    Google Scholar 

  • Kay, R. F., Williams, B. A., Ross, C., Takai, M., and Shigehara, N. (in press). Anthropoid origins: A phylogenetic analysis. In Ross, C., and Kay, R. F. (eds.), Anthropoid Origins: New Visions, Kluwer Academic/Plenum, New York.

  • Kieser, J. A., and Groeneveld, H. T. (1989). Patterns of sexual dimorphism and of the valiability in the dentition of Otolemur crassicaudatus. Int. J. Primatol. 10: 137-147.

    Google Scholar 

  • Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d'Europe occidentale: structures, milieux et évolution. Münch. Geowissenschaftliche Abh. Reihe A. Geol. Paläontol. 16: 1-110.

    Google Scholar 

  • Leutenegger, W. (1971). Metric variability of the postcanine dentition in colobus monkeys. Am. J. Phys. Anthropol. 35: 91-100.

    Google Scholar 

  • Pilgrim, G. E. (1927). A Sivapithecus palate and other primate fossils from India. Palaeontol. Indica, New Ser. 14: 1-26.

    Google Scholar 

  • Rafferty, K. L. (1996). Joint Design in Primates: External and Subarticular Properties in Relation to Body Size and Locomotor Behavior, PhD Dissertation, Johns Hopkins University, Baltimore, p. 307.

    Google Scholar 

  • Rafferty, K. L., Walker, A., Ruff, C. B., Rose, M. D., and Andrews, P. J. (1995). Postcranial estimates of body weight in Proconsul, with a note on a distal tibia of P. major from Napak, Uganda. Am. J. Phys. Anthropol. 97: 391-402.

    Google Scholar 

  • Ross, C., Williams, B., and Kay, R. F. (1998). Phylogenetic analysis of anthropoid relationships. J. Hum. Evol. 35: 221-306.

    Google Scholar 

  • Ruff, C. B. (1990) Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In Damuth, J., and MacFadden, B. (eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications, Cambridge University Press, Cambridge, UK, pp. 119-149.

    Google Scholar 

  • Ruff, C. B. (2003) Long bone articular and diaphyseal structure in Old World monkeys and apes. II: Estimation of body mass. Am. J. Phys. Anthropol. 120: 16-37.

    Google Scholar 

  • Runestad, J. A. (1994). Humeral and Femoral Diaphyseal Cross-Sectional Geometry and Articular Dimensions in Prosimii and Platyrrhini (Primates) With Applications for Reconstruction of Body Mass and Locomotor Behavior in Adapidae (Primate: Eocene), PhD Dissertation, Johns Hopkins University, Baltimore p. 443.

    Google Scholar 

  • Sauther, M. L., Cuozzo, F. P., and Sussman, R. W. (2001). Analysis of dentition of a living wild population of ring-tailed lemurs (Lemur catta) from Beza Mahafaly, Madagascar. Am. J. Phys. Anthropol. 114: 215-223.

    Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? Cambridge University Press, New York, p. 241.

    Google Scholar 

  • Smith, R. J. (1993). Bias in equations used to estimate fossil primate body mass. J. Hum. Evol. 25: 31-41.

    Google Scholar 

  • Smith, R. J. (1994). Degrees of freedom in interspecific allometry: An adjustment for the effects of phylogenetic constraint. Am. J. Phys. Anthropol. 93: 95-107.

    Google Scholar 

  • Smith, R. J. (2002) Estimation of body mass in paleontology. J. Hum. Evol. 42: 271-287.

    Google Scholar 

  • Smith, R. J., and Jungers, W. L. (1997). Body mass in comparative primatology. J. Hum. Evol. 32: 523-559.

    Google Scholar 

  • Swindler, D. R. (1976). Dentition of Living Primates, Academic Press, New York, p. 308.

    Google Scholar 

  • Takai, M., Shigehara, N., Aye ko Aung, Soe Thura Tun, Aung Naing Soe, Tsubamoto, T., and Tin Thein. (2001). A new anthropoid from the latest middle Eocene of Pondaung, central Myanmar. J. Hum. Evol. 40: 393-409.

    Google Scholar 

  • Tsutakawa, R. K., and Hewett, J. E. (1977). Quick test for comparing two populations with bivariate data. Biometrics 33: 215-219.

    Google Scholar 

  • Wilkinson, L. (1989). SYSTAT: The System for Statistics, SYSTAT, Inc., Evanston, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Egi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egi, N., Takai, M., Shigehara, N. et al. Body Mass Estimates for Eocene Eosimiid and Amphipithecid Primates Using Prosimian and Anthropoid Scaling Models. International Journal of Primatology 25, 211–236 (2004). https://doi.org/10.1023/B:IJOP.0000014651.82525.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOP.0000014651.82525.54

Navigation