Skip to main content
Log in

Artificial Neural Networks for Resonant Frequency Calculation of Rectangular Microstrip Antennas with Thin and Thick Substrates

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Neural models based on multilayered perceptrons for computing the resonant frequency of rectangular microstrip antennas with thin and thick substrates are presented. Eleven learning algorithms, Levenberg-Marquardt, conjugate gradient of Fletcher-Reeves, conjugate gradient of Powell-Beale, bayesian regularization, scaled conjugate gradient, Broyden-Fletcher-Goldfarb-Shanno, resilient backpropagation, conjugate of Polak-Ribiére, backpropagation with adaptive learning rate, one-step secant, and backpropagation with momentum, are used to train the multilayered perceptrons. The resonant frequency results obtained by using neural models are in very good agreement with the experimental results available in the literature. When the performances of neural models are compared with each other, the best result is obtained from the multilayered perceptrons trained by Levenberg-Marquardt algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bahl. I.J.; Bhartia. P.: Microstrip antennas. Dedharn MA.: Artcch House, 1980.

    Google Scholar 

  2. James, JR.: Hall. P.S.; Wood. C.: Microstrip antennas-theory and design. Peter Peregrinus Ltd.. 1981

  3. Gupta. K.C.; BenaJla. A. (Eds.): Microstrip antenna design, Canton MA.: Artech House, 1988.

    Google Scholar 

  4. James. JR.: Hall. P.S. (Eds.): Handbook of microstrip antennas. TEE electromagnetic wave series. Vols. 1 and 2, No. 28, London: Peter Peregrinus Ltd., 1989.

  5. Bhartia. F.: Rae. K.V.S.: Tomar. R.S. (Eds.): Millimeter-wave microstrip and printed circuit antennas. Canton MA.: Artech House. 1991.

    Google Scholar 

  6. Hirasawa. K.: Haneishi. M,: Analysis, design, and measurement of small and low-profile antennas. Canton MA.: Artech House, 1992.

    Google Scholar 

  7. Pozur. D.M.; Schaubert. OH. (Eds.): Microstrip antennas-the analysis and design of microstrip antennas and arrays. New York: IEEE Press, 1995.

    Google Scholar 

  8. Zurcher. J.F; Gardiol, FE.: Broadband patch antennas. Noiwood MA.: Artech House. 1995.

    Google Scholar 

  9. Sainati. R.A.: CAD of microstdp antennas for wireless applications. Noiwood MA: Artech House, 1996.

    Google Scholar 

  10. Lec, NE; Chen, W.: Advances in microstrip and printed antennas. New York: John Wiley and Sons. 1997.

    Google Scholar 

  11. Wong, K.L.: Design of nonpianar microstrip antennas and transmission lines. New York: John Wiley and Sons, 1999.

    Google Scholar 

  12. Garg. R.: Bhartia. P.: BahI, I.; Ittipihoon. A.: Microstrip antenna design handbook. Canton MA.: Artech House, 2002.

    Google Scholar 

  13. Wong. K.L.: Compact and broadband microstrip antennas. New York:, Iohn Wiley and Sons. 2002.

    Google Scholar 

  14. Wolff. T.: Knoppik. N.: Rectangular and circular microstrip disc capacitors and resonators. IEEE Trans. Microwave Theory Tech. 22(1974). 857-864.

    Google Scholar 

  15. Munson. RE.: Conformal niicrostrip antennas and microstrip phased arrays. IEEE Trans. Antennas Propagat. 22(1974), 74-78.

    Google Scholar 

  16. Howell. J.Q.: Microstrip antennas. IEEE Trans. Antennas Propagat. 23 (1975),90-93

    Google Scholar 

  17. Hammerstad. EQ.: Equations for mierostrip circuits desigui. Proc. Fifth European Microwave Conf.. Hamburg,. (Sept. 1975). 268-272.

  18. Derneryd, AG.: Linearly polarised microstrip antennas. IEEE Trans. Antennas Propagat. 23(1976), 846-851.

    Google Scholar 

  19. Lo. YiP.; Solomon, D.; Richards. WE.: Theory and experiment of niicrostrip antennas. IEEE Trans. Antennas Propagat. 27(1979). 137-145.

    Google Scholar 

  20. Carver. KR.: Practical analytical lcchniqucs fur thc microstrip antenna. Proc. Workshop on Printed Circuit Antenna Technology. New Mexico State University, Las Cruces, (Oct. 1979). 7.1-7.20.

    Google Scholar 

  21. Bahl, I.J.: Build microsirip antennas with paper-thin dimensions, Microwaves (Oct. 1979). 50-63.

  22. Carver. K.R.; Mink, J.W.: Microstrip antenna technology. IEEE Trans. Antennas Propagat. 29(1981), 2-24.

    Google Scholar 

  23. Iloh. T.: Menzel. W.: A full-wave analysis method for open niicrostip struclures. IEEE Trans. Mtennas Propagat. 29(1981), 63-68.

    Google Scholar 

  24. Richards, WE.: La VT.; Harrison. D.D,: An improved theory for microstrip antennas and applications. IEEE Trans. Antennas Fropagat. 29 (1981), 38-46.

    Google Scholar 

  25. Newman. E.H.: Tulyalhan. P.: Analysis of microstrip using moment methods. IEEE Trans. Antennas Propagat. 29(1981), 47-53.

    Google Scholar 

  26. Bailey, MC.: Deshpande, M.D.: Integral equation formulation of inicrostrip antennas. IEEE Trans. Antennas Propagar. 30 (1982). 651-656.

    Google Scholar 

  27. Sengupta. DL.: Approximate expression for the resonant frequency of a rectangular patch antenna. Electron. Lett. 19(1983), 834-835.

    Google Scholar 

  28. Pozar, D.M,: Considerations for millimeter wave printed antennas. IEEE Trans. Antennas Propagat. 31(1983), 740-747.

    Google Scholar 

  29. Mosig. JR.; Gardiol, FE.: General integral equation formulation for microstrip antennas and scatterers. IEE Proc. Microw. Antennas Pmpagat. 132 (1985), 424-432.

    Google Scholar 

  30. Chang. E.: Long. S.A.; Richards, W.F.: An experimental investigation of electrically thick rectangular inicrostrip antennas. IEEE Trans. Antennas Propagat. 34(1986). 767-772.

    Google Scholar 

  31. Garg, R.: Long. S.A.: Resonant frequency of electrically thick rectangular microstrip antennas. Electron, Lett. 23(1987), 1149-1151.

    Google Scholar 

  32. Chew. W.C.: Liu, 0.: Resonance frequency of a rectangular mierostrip patch. IEEE Trans. Ajitennas Propagat. 36(1988), 1045-1056.

    Google Scholar 

  33. Martin, N.M.: Improved cavity model parameteis for calculation of resonant frequency of rectangular microsirip antenna. Electron. Lett. 23 (1988), 680-681.

    Google Scholar 

  34. Deamley. R.W.: Bard. A.R.F.: A comparison of modds to determine the resonant frequencies of a rectangular microstrip antenna. IEEE Trans. Antennas Propagat. 37(1989). 114-118.

    Google Scholar 

  35. Damiano. J.P.: Papiernik. A.: A simple and accurate model for the resonant frequency and the input impedance of printed antennas. Int. J. of Microwave Millimeter-wave Computer-Aided Engineedng 3 (1993), 350-361.

    Google Scholar 

  36. Verma, AK.; Rostamy. Z.: Resonant frequency of uncovered and covered rectangular microstrip patch using modilied wolff model. IEEE Trans. Microwave Theory Tech. 41(1993), 109-116.

    Google Scholar 

  37. Lee, L Vorst, Ay.: Resonant-frequency calculation for clcctrically thick rectangular microstrip patch antennas using a dielectric-boded inhomogeneous cavity model. Microwave and Optical Technology Lett. 7 (1994). 704-708.

    Google Scholar 

  38. Güney, K,: A new edge extension expression for Ihe resonant frequency of electrically thick iectangular microstrip antennas. Int. J. of Electron. 75 (1993). 767-770.

    Google Scholar 

  39. Güney, K.: Resonant frequency of a tunable rectangular microstrip patch antenna. Microwave and Optical Technology Lett. 7(1994). 581-585.

    Google Scholar 

  40. Kara. M.: The resonant frequency of rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Lett, 11(1996). 55-59.

    Google Scholar 

  41. Kara. M.: Closed-lbrm expressions for the resonant frequicy ot. rectangular microstrip antenna elements with thick substrates. Microwave and Optical Technology Lett. 12(1996). 131-136.

    Google Scholar 

  42. Mylhili, P.; Das A.: Simple approach to determine resonant frequencies of microstrip antennas. IEE Proc. Microw. Antennas Propagal. 145 (1998), 159-162

    Google Scholar 

  43. Ray. KY.; Kumar, C,: Determination of the resonant frequency of microstrip antennas. Microwave and Op1ica Technology Lett. 23 (1999), 114-117.

    Google Scholar 

  44. Guney. K.: A new edge extension expression for the resonant frequency of recungular microstrip antennas with thin and thick substrates. J. of Communications Technology and Electronics 49(2004). 49-53.

    Google Scholar 

  45. Maren, A. C.; Harston. C; Pap, R.: Handbook of neural computing applications. London: Academic Press. 1990.

    Google Scholar 

  46. Haykin, S.: Neural networks: A comprehensive foundation. New York: Macmillan College Publishing Company, 1994.

    Google Scholar 

  47. Zhang. Q. J.; Gupta. K.C.: Neural networks for RF and microwave design. BostonMA.: Artech House, 2000.

    Google Scholar 

  48. Christodoulou, C. G.; Georgiopoulos, M.: Application of neural networks in electromagnetics. MA.: Artech House, 2001.

    Google Scholar 

  49. Sagiroglu. S.: Guney, K.: Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks. Microwave and Optical Technology Lett. 14(1997). 89-93.

    Google Scholar 

  50. Sagiroglu. S.; Guney. K.; Erler, M.: Resonant frequency calculation for circular microstrip antennas using artificial neural networks. Int. J. of RF and Microwave Computer-Aided Engineering 8 (1998), 270-277.

    Google Scholar 

  51. Karaboga, D.: Guney, K,: Sagiroglu. S.; Erler, M.: Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. lEE Proc. Mierow. Antennas Propagat. 146 (1999), 155-159.

    Google Scholar 

  52. Sagiroglu, S.: Guney, K.; Erler, M.: Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered pcrceptrons. Int. J. of RF and Microwave Cotqulcr-Aided Engineering 9(1999), 277-286.

    Google Scholar 

  53. Guney, K.; Erler, M,; Sagiroglu, S.: Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas, Electromagnetics 20(2000), 387-400.

    Google Scholar 

  54. Guney. K.: Sagiroglu, S.: Erler. M.: Comparison of neural networks lhr resonant frequency computation of electrically thin and thick rectangular microstrip antennas. J. of Electromagnetic Waves and Applications 15 (2001), 1121-1145.

    Google Scholar 

  55. Guney. K.; Sagiroglu. S.; Erler. M.: Design of rectangular mieTostrip antennas with the use of artificial neural neiworks, Neural Network World 4 (2002). 361-370.

    Google Scholar 

  56. Guney, K.; Sagiroglu, S.; Erler. M.: Generalized neural method to determine resonant frequencies of various inicrostrip antennas. Int. J. of RF and Microwave Computer-Aided Engineering 12 (2002). 131-139.

    Google Scholar 

  57. Yildiz, C.; Gultekin. S. S.; Guney. K.; Sagiroglu, S.: Neural models für the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides hacked with a conductor. AEU-lnternational J. of Electronics and Communications 56(2002), 396-406.

    Google Scholar 

  58. Guney. K.: Sarikaya, N.: Artificial neural networks for calculating the input resistance of circular microstrip antennas, Microwave and Optical Technology Lett, 37(2003), 107-111.

    Google Scholar 

  59. Gultekin. S. S.; Guney. K.: Sagiroglu. S.: Neural networks for the calculation of bandwidth of rectangular nilerostrip antennas. Applied computational Electromagnetics Society (ACES) Journal 18 (2003). 46-56.

    Google Scholar 

  60. Guney, K.: Sarikaya, N.: Artificial neural networks for the narrow aperture dimension calculation of optimum gain pyramidal horns. Electrical Engineering 86(2004). 157-163.

    Google Scholar 

  61. ilagan, MT.: Menhaj, M.: Training fecdforward networks with the Marquardt algorithm. WEE Trans. Neural Networks 5 (1994), 989-993.

    Google Scholar 

  62. Fletcher. R.; Reeves. C. M.: Function minmizalion hy conjugate gradients. Computer J. 7(1964). 149-154.

    Google Scholar 

  63. Powell, M. J. U.: Restart procedures for the conjugate gradient method. Mathematical Programming 12(1977), 241-254.

    Google Scholar 

  64. Beale. E. M. L.: A derivation of conjugate gradients. numerical methods for nonlinear optimization. London: Academic Press, 1972.

    Google Scholar 

  65. MacKay. D. J. C.: Bayesian interpolation. Neural Computation 4 (1992). 415-447.

    Google Scholar 

  66. Moller. M. F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6(1993), 525-533.

    Google Scholar 

  67. Dennis, J. B.: Schnahel. R. B,: Numerical methods or unconstrained optimization and nonlinear equations. Englewood Cliffs, NJ: Prentice-Hall. 1983.

    Google Scholar 

  68. Riedmiller, M.: Braun. H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. Proc. of the IEEE International Conference on Neural Neiworks, San Francisco, CA, I, (March 1993). 586-591.

  69. Hagan M. T.; Demuth H. B.; Beale, M.: Neural network design. Boston: PWS Puhlishing Company, 1996.

    Google Scholar 

  70. Baititi. R.: First and second order methods for learning: hetween steepest descent and Ncwlons method. Neural Computation 4(1992), 141-166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guney, K., Gultekin, S.S. Artificial Neural Networks for Resonant Frequency Calculation of Rectangular Microstrip Antennas with Thin and Thick Substrates. International Journal of Infrared and Millimeter Waves 25, 1383–1399 (2004). https://doi.org/10.1023/B:IJIM.0000045146.70836.ee

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJIM.0000045146.70836.ee

Navigation