Skip to main content
Log in

Thermal Effects of Microwave Energy in Agricultural Soil Radiation

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The thermal treatment by millimeter waves for the soil disinfection can be one possible alternative to chemical treatments. This physical method is based on incrementing the soil temperature and its pathogens irradiating with high frequency electromagnetic waves. So the previous knowledge of the temperature distribution in the irradiated soil is essential for achieving an effective bad microorganism and weed seeds elimination. This report analyse the heating kinetic and spatial distribution of the maximum temperatures reached by the soil. It is presented a mathematic model about how are distributed the reached temperatures in the depth of the irradiated soil. This model concludes that when an orchard soil is irradiated superficially by microwaves, the microwaves have a big attenuation due to the soil dielectric properties and the water located in the pores of the most superficial layer. This fact causes a shield effect blocking the waves penetration in few centimetres. The heating by radiation is reduced to the superficial layer. The heating propagation in the depth is occurred by conduction following the Fourier equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Ali I.A., Al-Amri A.M., Dawoud M.M. 2000. Dielectric properties of dates at 2.45GHz determined with a tunable single-mode resonant cavity. J Microwave Power EE. 35(4), 242-252

    Google Scholar 

  • Barker A.V., Craker L.E. 1991, Inhibition of weed-germination by microwaves. Agronomy Journal 83, 302-305.

    Google Scholar 

  • Blank R.R., Abraham L., Young J.A. 1994. Soil heating, nitrogen, cheatgrass and seedbeds microsites. Journal of Management 47(1), 33-37.

    Google Scholar 

  • Buchan G. D. 1991. Soil Temperature Regime. Smith K.A. & Mullis Ch. E. (ed) Soil Analysis. Marcel Dekker, Inc. New York.

    Google Scholar 

  • Catal\'a-Cuvera J.M., de los Reyes E. 1999. Microwave inactivation of Polyphenoloxidase for mushroom blaching. Automatika 39, 57-62

    Google Scholar 

  • Catal\'a-Civera J.M., de los Reyes E. 1999. Enzyme inactivation an\'alisis for industrial blanching aplications employing 24580 MHz monomode microwave cavities. Journal of Microwave Power and Electromagnetic Energy 34, 239-252.

    Google Scholar 

  • Davis F., Wayland J., Merkle M. 1971. Ultrahigh-frequency electromagnetic fields for weed control: phytotoxicity and selectivity. Science 173, 535-537.

    Google Scholar 

  • De Vries D.A., Philip J.R. 1975. Soil heat flux, thermal conductivity, and the null-agliment method. Soil Science Socciety American Journal, 50., 12-18.

    Google Scholar 

  • Dev H., Condorelli P., Briges J., Rogers C., Downey D. 1986. In-situ radio-frequency heating process for decontamination of soil. Abstract of Papers of the American Chemical Society 191, pp 96

    Google Scholar 

  • Disprose M.F., Benson F.A., Willis A.J. 1984. The effect of externally applied electrostatic fields, microwave radiation and electric currents on plants and other organisms, with especial reference to weed control. Journal The Botanical Review. 50(2), 171-223

    Google Scholar 

  • Fox R.D., Alperin E.S., Huls H.H. 1991, Thermal treatment for the removal of PCBs and other organics from soil. Environmental Progress 10, 40-44.

    Google Scholar 

  • Fujiwara O., Goto Y., Amemiya Y. 1983. Characteristics of microwave power absorption in an insect exposed to standing-wave fields. Electronics and Communications in Japan, 66-B, pg. 46-54.

    Google Scholar 

  • Giovannini G., Luchesi S., Giachetti M. 1990, Effects of heating on some chemical-parameters related to soil fertility and plant-growth. Soil Science 149, 334-350.

    Google Scholar 

  • Gracia-L\'opez C., Vel\'azquez-Mart\'i B. 2002, Effects of Microwave Energy for Agricultural Soil Processing. Abstracts of International Conference on Agricultural Engineering, AgEng2002. Budapest, Hungary, July 1\2-4: pp 48-50.

  • Hockstra P., Delaney A. 1974. Dielectric properties of soil at UHF and microwave frequencies. Journal of Geophysical Research 79, 1699-1708.

    Google Scholar 

  • Krasewski A.W., Nelson S.O. 1995. Application of microwave techniques in agricultural research. SBMO/IEEE MTT-S International microwave and optoelectronics conference. pp 117-126.

  • Lagu\:e, C., Ch\`enard, L., Savard P. 1992. Engineering performance of propane burners used for weed and pest insect control. ASAE meeting presentation, Internacional Winter Meeting. Nashville, Tennessee, USA, paper no 92, 1598

    Google Scholar 

  • Mavrogianopoulos G.N., Frangoudakis A., Pandelakis J., 2000, Energy efficient soil disinfestation by microwaves. Journal Agricultural engineering 75, 149-153.

    Article  Google Scholar 

  • Menges R., Wayland J. 1974. UHF electromagnetic energy for weed control in vegetables. Weed Science 22(6), 84-590.

    Google Scholar 

  • Metaxas A.C., Meredith R. J., 1983. Industrial Microwave Heating. IEE Power Engineering Series 4, Peter Peregrinus Ltd London.

    Google Scholar 

  • Nelson S.O., Nutile G.E., Stetson L.E. 1970. Effects of RF electrical seed treatment on germination of vegetables seeds. Journal American Society Horticulture Science. 95, 359-366.

    Google Scholar 

  • Nelson S.O. 1985. RF and microwave energy for potential agricultural applications. Journal of Microwave Power 20(2), 65-70.

    Google Scholar 

  • Nelson S.O. 1996. A review and assessment of microwave energy for soil treatment to control pests. Transactions of the ASAE. 39(1), 281-289

    Google Scholar 

  • Olsen R., 1975. A theoretical investigation of microwave irradiation of seeds in soil. Journal of Microwave Power. 1975. 10.3, 281-296

    Google Scholar 

  • Olsen R. G., hammer w.c. 1982. Thermographic anaysis of waveguide-irradiated insect pupae. Radio Science 17, 95-104

    Google Scholar 

  • Vel\'azquez-Mart\'i B., Gracia-L\'opez C., Plaza-Gonzalez P.J., Ginar-Santonja G. 2003. Estudio de las propiedades diel\'ectricas de suelos agricolas. Abstracts of II Congreso de la Sociedad Espa\~nola de Agroingenier\'ia. C\'ordoba, Spain, Sept 24\2-27; pp 457-458

  • Vel\'azquez-Mart\'i B., Gracia-L\'opez C., 2003, Comparaci\'on de dos sistemas de aplicaci\'on de microondas destinados a la desinfecci\'on de sustratos y suelos agricolas. Abstracts of II Congreso de la Sociedad Espa\~nola de Agroingenier\'ia. C\'ordoba, Spain, Sept 24\2-27; pp 425-427

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez-Martí, B., Gracia-López, C. Thermal Effects of Microwave Energy in Agricultural Soil Radiation. International Journal of Infrared and Millimeter Waves 25, 1109–1122 (2004). https://doi.org/10.1023/B:IJIM.0000037659.40989.e2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJIM.0000037659.40989.e2

Navigation