Skip to main content
Log in

Abstract

The methanol isotopic species CH3OD has also proved to be an efficient and powerful medium to generate radiation in the far infrared (FIR) region. After the critical review of 1994, six papers have been published dealing with new FIR laser lines from this molecule. As a consequence of the use of wide tunability waveguide CO2 lasers as well as a new pulsed CO2 laser operating at hot and sequential bands, as of optical pumping sources, the total number of the FIR laser lines increased from 122 in 1994 to 227 today. In this communication we present an updated and complete catalogue of FIR laser lines generated from CH3OD. Information on wavelength, offset, relative polarization, intensity, and optimum operation pressure is generally available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.Y. Chang and T.J. Bridges. Optics Communication 1, no. 9, 423-426 (1970).

    Google Scholar 

  2. S.F. Dyubko, V.A. Svich, and L.D. Fesenko. Sov. Phys. Tech. Phys. 18, no. 8, 1121(1974)

    Google Scholar 

  3. M. Inguscio, F. Strumia, J.O. Henningsen, in Optically Pumped Far Infrared laser, edited by K.J. Button, M. Inguscio, F. Strumia, Plenum Press, v2, N.Y., 1984.

    Google Scholar 

  4. N.G. Douglas. Millimeter and Submillimeter Wavelength Lasers. Springer Verlag, 1989.

  5. M. Inguscio, A. Moretti, and F. Strumia. Optics Communication 30, no. 3, 355-360 (1979).

    Google Scholar 

  6. D. Pereira, J.C.S. Moraes, E.M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C.A. Massa. Int. Journal of Infrared and MM Waves 15, no. 1, 1-44 (1994).

    Google Scholar 

  7. S.C. Zerbetto, and E.C.C. Vasconcellos. Int. Journal of Infrared and MM Waves 15, no. 15, 889-993 (1994).

    Google Scholar 

  8. E.M. Telles, L.R. Zink, and K.M. Evenson. Int. Journal of Infrared and MM Waves, 20, no. 5, 741-758 (1999).

    Google Scholar 

  9. E.C.C. Vasconcellos, S.C. Zerbetto, L.R. Zink, and K.M. Evenson. Int. Journal of Infrared and MM Waves, 21, no. 4, 477-483 (2000).

    Google Scholar 

  10. E.C.C. Vasconcellos, C. Dirocco, B. Chuzles, J. Knier, J. Schwalbe, D. Sutton, M. Jackson. Applied Physics B 77, no. 1, 97-99 (2003)

    Google Scholar 

  11. M. Jackson, P. Noffke, L.R. Zink. Applied Physics B 78, 273-274 (2004).

    Google Scholar 

  12. L.F.L. Costa, F.C. Cruz, J.C.S. Moraes, and D. Pereira. New FIR laser lines from CH3OD methanol deutered isotope. Accepted in the IEEE J. Quantum Electronics.

  13. A. De Michele, G. Carelli, A. Moretti, F. Strumia, D. Pereira. A new pulsed CO2 laser yielding new FIR laser lines from CH3OD pumped by the 10P and 10HP lines. Accept in the J. Phys. B-Atomic, Molecular and Optical Phys.

  14. F.C. Cruz, A. Scalabrin, D. Pereira, P.A.M. Vazquez, Y. Hase, and F. Strumia. Journal of Molecular Spectroscopy 156, 22-38 (1992).

    Google Scholar 

  15. S. Kon, T. Yano, E. Hagiwara and H. Hirose. Japan J. Appl. Phys. 14, no. 11, 1861-1862 (1975).

    Google Scholar 

  16. B.L. Bean and S. Perkowitz. Optics Letters 1, no. 6, 202-204 (1977).

    Google Scholar 

  17. H.E. Radford, F.R. Peterson, D.A. Jennings and J.A. Mucha. IEEE J. Quantum Electronics, 92-94 (1977).

  18. T.G. Blaney, D.J.E. Knight and E.K. Murray Lloyd. Optics Communication 25, no.2, 176-178 (1978).

    Google Scholar 

  19. H. Herman and B.E. Prewer. Appl. Phys. 19, 241-242 (1978).

    Google Scholar 

  20. M.W. Lund and J.A. Davis. IEEE J. Quantum Electronics QE-15, no.7, 537-538 (1979).

  21. H.J.A. Bluyssen, A.F. Van Etteger, J.C. Maan and P. Wyder. IEEE J. Quantum Electronics QE-16, no. 12, 1347-1351 (1980).

  22. Y.C. Ni and J. Heppner. Optics Communication 32, no. 3, 459-460 (1980).

    Google Scholar 

  23. B.M. Landsberg. IEEE J. Quantum Electronics QE-16, 704(1980).

  24. C. Gastaud, A. Sentz, M. Redon and M. Fourrier. IEEE J. Quantum Electronics QE-16, no. 12, 1285-1287 (1980).

  25. B.W. Davis, A. Vass, C.R. Pidgeon and G.R. Allan. Optics Communication 37, no. 4, 303-305 (1981).

    Google Scholar 

  26. T. Yoshida, T. Yoshihara, K. Sakai and S. Fujita. Infr. Phys. 22, 293-298 (1982).

    Google Scholar 

  27. J.C. Petersen and G. Duxbury.. Appl. Phys. B 37, 209-211 (1985).

    Google Scholar 

  28. M. Fourier and A. Kreisler. Appl. Phys. B, 57-60 (1986).

  29. J.K. Vij, F. Hifnagel, M. Helker, and C.J. Reid. IEEE Journal of Quantum Electronics QE 22, no. 7, 1123-1130 (1986).

  30. S. Huant, M. A. Hopkins, K. Karraï, G. Dampne, R.J. Nicholas and L.C. Brunel. Revue Physique Appliquée 22, 205-206 (1987).

    Google Scholar 

  31. H.E. Radford, K.M. Evenson, F. Matushima, L.R. Zink, G.P. Galvão and T.J. Sears. Int. Journal of Infrared and MM Waves 12, no. 10, 1161-1166 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Michele, A., Carelli, G., Moretti, A. et al. FIR Laser Lines from CH3OD: A Review. International Journal of Infrared and Millimeter Waves 25, 725–734 (2004). https://doi.org/10.1023/B:IJIM.0000027574.46884.25

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJIM.0000027574.46884.25

Navigation