Skip to main content
Log in

The Arthritogenic and Immunostimulatory Properties of Phosphorothioate Oligodeoxynucleotides Rely on Synergy Between the Activities of the Nuclease-Resistant Backbone and CpG Motifs

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Experiments with immunostimulatory unmethylated CpG-containing DNA are usually conducted with nuclease-protected phosphorothioate oligodeoxynucleotides (S-ODNs), rather than phosphodiester oligodeoxynucleotides (O-ODNs). We compared the murine immune responses to S-ODNs and O-ODNs that either contained or lacked CpG motifs. Both CpG and non-CpG S-ODNs induced synovitis, as did sequence-matched CpG O-ODN, but not GpC O-ODN. There was a minimum length requirement for arthritogenic S-ODNs since a CpC dinucleotide S-ODN did not induce arthritis. There were both sequence-(CpG > non-CpG) and backbone-dependent (S-ODN > O-ODN) differences in the levels of DNA-induced arthritis upon intra-articular injection with the ODNs. However, CpG O-ODN being an exception, induced more severe arthritis than the GpC S-ODN. The levels of in vitro proliferation and production of IL-6, TNF-α, IL-12, and RANTES by splenocytes following exposure to CpG S-ODN were significantly higher than those induced by CpG O-ODN. In addition, both proliferative responses and cytokine production induced by S-ODN-stimulated splenocytes increased significantly when the S-ODN contained a CpG motif. Transcription factor NFκB was activated by both CpG S-ODN and CpG O-ODN but interestingly not by GpC S-ODN. This indicates that the NFκB signal pathway modulates CpG-mediated immunostimulation, while sequence-independent immune activation by the phosphorothioate backbone is probably signalled via a different pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hemmi, H, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshing, H. Wagner, K. Takeda, and S. Akira. 2000. A toll-like receptor recognizes bacterial DNA. Nature 408: 740-745.

    Google Scholar 

  2. Krieg, A. M. 2000. The role of CpG motifs in innate immunity. Curr. Opin. Immunol. 12: 35-43.

    Google Scholar 

  3. Krieg, A. M., A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546-549.

    Google Scholar 

  4. Moldoveanu, Z., L. Love-Homan, W. Q. Huang, and A. M. Krieg. 1998. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 16: 1216-1224.

    Google Scholar 

  5. Han, S. S., S. T. Chung, D. A. Robertson, R. L. Chelvarajan, and S. Bondada. 1999. CpG oligodeoxynucleotides rescue BKS-2 immature B cell lymphoma from anti-IgM-mediated growth inhibition by up-regulation of egr-1. Int. Immunol. 11: 871-879.

    Google Scholar 

  6. Krieg, A. M., T. Wu, R. Weeratna, S. M. Efler, L. Love-Homan, L. Yang, A. K. Yi, D. Short, H. L. Davis. 1998. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc. Natl. Acad. Sci. U.S.A. 95: 12631-12636.

    Google Scholar 

  7. Yi, A. K. and A. M. Krieg. 1998. CpG DNA rescue from anti-IgM-induced WEHI-231 B lymphoma apoptosis via modulation of I kappa B alpha and I kappa B beta and sustained activation of nuclear factor-kappa B/c-Rel. J. Immunol. 160: 1240-1245.

    Google Scholar 

  8. Yi, A. K., D. W. Peckham, R. F. Ashman, and A. M. Krieg. 1999. CpG DNA rescues B cells from apoptosis by activating NFkappaB and preventing mitochondrial membrane potential disruption via a chloroquine-sensitive pathway. Int. Immunol. 11: 2015-2024.

    Google Scholar 

  9. Qi, L. and K. H. Sit. 2000. CpG-specific common commitment in caspase-dependent and-independent cell deaths. Mol. Cell. Biol. Res. Commun. 3: 33-41.

    Google Scholar 

  10. Sparwasser, T., T. Miethke, G. Lipford, A. Erdmann, H. Hacker, K. Heeg, and H. Wagner. 1997. Macrophages sense pathogens via DNA motifs: Induction of tumor necrosis factor-alpha-mediated shock. Eur. J. Immunol. 27: 1671-1679.

    Google Scholar 

  11. Sester, D. P., S. Naik, S. J. Beasley, D. A. Hume, and K. J. Stacey. 2000. Phosphorothioate backbone modification modulates macrophage activation by CpG DNA. J. Immunol. 165: 4165-4173.

    Google Scholar 

  12. Halpern, M. D. and D. S. Pisetsky. 1995. In vitro inhibition of murine IFN gamma production by phosphorothioate deoxyguanosine oligomers. Immunopharmacology 29: 47-52.

    Google Scholar 

  13. Bauer, M., K. Heeg, H. Wagner, and G. B. Lipford. 1999. DNA activates human immune cells through a CpG sequence-dependent manner. Immunology 97: 699-705.

    Google Scholar 

  14. Liang. H., Y. Nishioka, C. F. Reich, D. S. Pisetsky, and P. E. Lipsky. 1996. Activation of human B cells by phosphorothioate oligodeoxynucleotides. J. Clin. Invest. 98: 1119-1129.

    Google Scholar 

  15. Parronchi, P., F. Brugnolo, F. Annunziato, C. Manuelli, S. Sampognaro, C. Mavilia, S. Romagnani, and E. Maggi. 1999. Phosphorothioate oligodeoxynucleotides promote the in vitro development of human allergen-specific CD4+ T cells into Th1 effectors. J. Immunol. 163: 5946-5953.

    Google Scholar 

  16. Yew, N. S., K. X. Wang, M. Przybylska, R. G. Bagley, M. Stedman, J. Marshall, R. K. Scheule, and S. H. Cheng. 1999. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid: pDNA complexes. Hum. Gene. Ther. 10: 223-234.

    Google Scholar 

  17. Yew, N. S., H. Zhao, I. H. Wu, A. Song, J. D. Tousignant, M. Przybylska, S. H. Cheng. 2000. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol. Ther. 1: 255-262.

    Google Scholar 

  18. Li, S., S. P. Wu, M. Whitmore, E. J. Loeffert, L. Wang, S. C. Watkins, B. R. Pitt, L. Huang. 1999. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am. J. Physiol. 276: L796-L804.

    Google Scholar 

  19. Schwartz, D. A., T. J. Quinn, P. S. Thorne, S. Sayeed, A. K. Yi, and A. M. Krieg. 1997. CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. J. Clin. Invest. 100: 68-73.

    Google Scholar 

  20. Takeshita, S., F. Takeshita, D. E. Haddad, K. J. Ishii, and D. M. Klinman. 2000. CpG oligodeoxynucleotides induce murine macrophages to up-regulate chemokine mRNA expression. Cell Immunol. 206: 101-106.

    Google Scholar 

  21. Deng, G. M., I. M. Nilsson, M. Verdrengh, L. V. Collins, and A. Tarkowski. 1999. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5: 702-705.

    Google Scholar 

  22. Miyata, M., H. Kobayashi, T. Sasajima, Y. Sato, and R. Kasukawa. 2000. Unmethylated oligo-DNA containing CpG motifs aggravates collagen-induced arthritis in mice. Arthritis Rheum. 43: 2578-2582.

    Google Scholar 

  23. Lee, S. W., M. K. Song, K. H. Baek, Y. Park, J. K. Kim, C. H. Lee, H. K. Cheong, C. Cheong, and Y. C. Sung. 2000. Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. J. Immunol. 165: 3631-3639.

    Google Scholar 

  24. Dalpke, A. H., S. Zimmermann, I. Albrecht, and K. Heeg. 2002. Phosphodiester CpG oligonucleotides as adjuvants: Polyguanosine runs enhance cellular uptake and improve immunostimulative activity of phosphodiester CpG oligonucleotides in vitro and in vivo. Immunology 106: 102-112.

    Google Scholar 

  25. Kline, J. N., T. J. Waldschmidt, T. R. Businga, J. E. Lemish, J. V. Weinstock, P. S. Thorne, and A. M. Krieg. 1998. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J. Immunol. 160: 2555-2559.

    Google Scholar 

  26. Broide, D., J. Schwarze, H. Tighe, T. Gifford, M. D. Nguyen, S. Malek, J. Van Uden, E. Martin-Orozco, E. W. Gelfand, and E. Raz. 1998. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J. Immunol. 161: 7054-7062.

    Google Scholar 

  27. Sur, S., J. S. Wild, B. K. Choudhury, N. Sur, R. Alam, and D. M. Klinman. 1999. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J. Immunol. 162: 6284-6293.

    Google Scholar 

  28. Bremell, T., A. Abdelnour, and A. Tarkowski. 1992. Histopathological and serological progression of experimental Staphylococcus aureus arthritis. Infect. Immun. 60: 2976-2985.

    Google Scholar 

  29. Bergquist, J., B. Ohlsson, and A. Tarkowski. 2000. Nuclear factor-kappa B is involved in the catecholaminergic suppression of immunocompetent cells. Ann. N. Y. Acad. Sci. 917: 281-289.

    Google Scholar 

  30. Krieg, A. M. 2001. Now I know my CpGs. Trends Microbiol. 9: 249-252.

    Google Scholar 

  31. Sweet, M. J., C. C. Campbell, D. P. Sester, D. Xu, R. C. McDonald, K. J. Stacey, D. A. Hume, and F. Y. Liew. 2002. Colony-stimulating factor-1 suppresses responses to CpG DNA and expression of toll-like receptor 9 but enhances responses to lipopolysaccharide in murine macrophages. J. Immunol. 168: 392-399.

    Google Scholar 

  32. Jakob, T., P. S. Walker, A. M. Krieg, M. C. Udey, and J. C. Vogel. 1998. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: A role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J. Immunol. 161: 3042-3049.

    Google Scholar 

  33. Podlaski, F. J., V. B. Nanduri, J. D. Hulmes, Y. C. Pan, W. Levin, W. Danho, R. Chizzonite, M. K. Gately, and A. S. Stern. 1992. Molecular characterization of interleukin 12. Arch. Biochem. Biophys. 294: 230-237.

    Google Scholar 

  34. Ghosh, S., M. J. May, and E. B. Kopp. 1998. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225-260.

    Google Scholar 

  35. Katrib, A., H. P. McNeil, and P. P. Youssef. 2002. What can we learn from the synovium in early rheumatoid arthritis? Inflamm. Res. 51: 170-175.

    Google Scholar 

  36. Trinchieri, G. 1998. Proinflammatory and immunoregulatory functions of interleukin-12. Int. Rev. Immunol. 16: 365-396.

    Google Scholar 

  37. Deng, G. M. and A. Tarkowski. 2001. Synovial cytokine mRNA expression during arthritis triggered by CpG motifs of bacterial DNA. Arthritis. Res. 3: 48-53.

    Google Scholar 

  38. Van Snick, J. 1990. Interleukin-6: An overview. Annu. Rev. Immunol. 8: 253-278.

    Google Scholar 

  39. Ohshima, S., Y. Saeki, T. Mima, M. Sasai, K. Nishioka, S. Nomura, M. Kopf, Y. Katada, T. Tanaka, M. Suemura, and T. Kishimoto. 1998. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc. Natl. Acad. Sci. U.S.A. 95: 8222-8226.

    Google Scholar 

  40. Igaz, P., A. Horvath, B. Horvath, C. Szalai, E. Pallinger, E. Rajnavolgyi, S. Toth, S. Rose-John, and A. Falus. 2000. Soluble interleukin-6 receptor (sIL-6R) makes IL-6R negative T cell line respond to IL-6; it inhibits TNF production. Immunol. Lett. 71: 143-148.

    Google Scholar 

  41. Aderka, D., J. M. Le, and J. Vilcek. 1989. IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J. Immunol. 143: 3517-3523.

    Google Scholar 

  42. Volin, M. V., M. R. Shah, M. Tokuhira, G. K. Haines, J. M. Woods, and A. E. Koch. 1998. RANTES expression and contribution to monocyte chemotaxis in arthritis. Clin. Immunol. Immunopathol. 89: 44-53.

    Google Scholar 

  43. Deng, G. M. and A. Tarkowski. 2000. The features of arthritis induced by CpG motifs in bacterial DNA. Arthritis. Rheum. 43: 356-364.

    Google Scholar 

  44. Zhao, Q., J. Temsamani, P. L. Iadarola, Z. Jiang, and S. Agrawal. 1996. Effect of different chemically modified oligodeoxynucleotides on immune stimulation. Biochem. Pharmacol. 51: 173-182.

    Google Scholar 

  45. Matson, S. and A. M. Krieg. 1992. Nonspecific suppression of '3H'thymidine incorporation by “control” oligonucleotides. Antisense Res. Dev. 2: 325-330.

    Google Scholar 

  46. Zhao, Y. X., A. Abdelnour, R. Holmdahl, and A. Tarkowski. 1995. Mice with the xid B cell defect are less susceptible to developing Staphylococcus aureus-induced arthritis. J. Immunol. 155: 2067-2076.

    Google Scholar 

  47. Deng, G. M., M. Verdrengh, and Z. Q. Liu, A. Tarkowski. 2000. The major role of macrophages and their product tumor necrosis factor alpha in the induction of arthritis triggered by bacterial DNA containing CpG motifs. Arthritis. Rheum. 43: 2283-2289.

    Google Scholar 

  48. Molne, L., L. V. Collins, and A. Tarkowski. Inflammatogenic properties of bacterial DNA following cutaneous exposure. J. Invest. Dermatol. 121: 294-299.

  49. Takeshita, F. and D. M. Klinman. 2000. CpG ODN-mediated regulation of IL-12 p40 transcription. Eur. J. Immunol. 30: 1967-1976.

    Google Scholar 

  50. Takeshita, F., K. J. Ishii, A. Ueda, Y. Ishigatsubo, and D. M. Klinman. 2000. Positive and negative regulatory elements contribute to CpG oligonucleotide-mediated regulation of human IL-6 gene expression. Eur. J. Immunol. 30: 108-116.

    Google Scholar 

  51. Mason, N., J. Aliberti, J. C. Caamano, H. C. Liou, and C. A. Hunter. 2002. Cutting edge: Identification of c-Rel-dependent and-independent pathways of IL-12 production during infectious and inflammatory stimuli. J. Immunol. 168: 2590-2594.

    Google Scholar 

  52. Hartmann, G. and A. M. Krieg. 2000. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164: 944-953.

    Google Scholar 

  53. Yi, A. K. and A. M. Krieg. 1998. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J. Immunol. 161: 4493-4497.

    Google Scholar 

  54. Hacker, H., H. Mischak, T. Miethke, S. Liptay, R. Schmid, T. Sparwasser, K. Heeg, G. B. Lipford, and H. Wagner. 1998. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. Embo. J. 17: 6230-6240.

    Google Scholar 

  55. Zhao, Q., S. Matson, C. J. Herrera, E. Fisher, H. Yu, and A. M. Krieg. 1993. Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3: 53-66.

    Google Scholar 

  56. Chuang, T. H., J. Lee, L. Kline, J. C. Mathison, and R. J. Ulevitch. 2002. Toll-like receptor 9 mediates CpG-DNA signaling. J. Leukoc. Biol. 71: 538-544.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan L. Bjersing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjersing, J.L., Eriksson, K., Tarkowski, A. et al. The Arthritogenic and Immunostimulatory Properties of Phosphorothioate Oligodeoxynucleotides Rely on Synergy Between the Activities of the Nuclease-Resistant Backbone and CpG Motifs. Inflammation 28, 39–51 (2004). https://doi.org/10.1023/B:IFLA.0000014710.44475.94

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IFLA.0000014710.44475.94

Navigation