Skip to main content
Log in

Breakdown of the Verwey-Mott localization hypothesis in magnetite

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Temperature-dependent57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC), whereby charge density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is ad-charge decoupling within the octahedral sites at the inverse-spinel phase. The CC transition takes place almost exactly at the Verwey transition temperature (T V =122 K) at ambient pressure. WhileT V decreases with pressure the CC-transition temperature increases with pressure, reaching 300 K at 10 GPa. Thed electron localization mechanism proposed by Verwey and later by Mott forT<T V is shown to be unrelated to the actual mechanism of the metal-insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼T V opens a small gap within the oxygenp-band, resulting in the observed insulating state atT>T V .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buseck, P. R., Dunin-Borkowski, R. E., Devouard, B., Frankel, R. B., McCartney, M. R., Midgley, A. P., Pósfai, M. and Weyland, M.,PNAS 98 (2001), 13490.

    Article  ADS  Google Scholar 

  2. Deutschlander, M. E., Borland, S. C. and Phillips, J. B.,Nature 400 (1999), 324; Wiltschko, W., Munro, U., Wiltschko, R. and Kirschvink, J. L.,J. Exp. Biol. 205 (2002), 3031.

    Article  ADS  Google Scholar 

  3. Poddar, P., Fried, T. and Markovich, G.,Phys. Rev. B 65 (2002), 172405; Tacacs, L.,Nanostruct. Mater. 2 (1993), 241.

    Article  Google Scholar 

  4. Verwey, E. J.,Nature (Lond.) 144 (1939), 327.

    ADS  Google Scholar 

  5. Verwey, E. J., Haayman, P. W. and Romeijan, F. C.,J. Chem. Phys. 15 (1947), 181.

    Article  ADS  Google Scholar 

  6. Reviews on several aspects of the Verwey transition published before 1980 are collected in the special issue ofPhilos. Mag. B 42(3) (1980).

  7. Mott, N. F.,Festkorperproblem 19 (1979), 331.

    Google Scholar 

  8. Mizoguchi, T. and Inoue, M.,J. Phys. Soc. Jap. 21 (1966), 1310.

    Article  ADS  Google Scholar 

  9. García, J., Subías, G., Proietti, M. G., Renevier, H., Joly, Y., Hodeau, J. L., Blasco, J., Sánchez, C. M. and Bérar, J. F.,Phys. Rev. Lett. 85 (2000), 578.

    Article  ADS  Google Scholar 

  10. Novák, P., Štěpánková, J., Englich, J., Kohout, J. and Brabers, V. A. M.,Phys. Rev. B 61 (2000), 1256.

    Article  ADS  Google Scholar 

  11. García, J., Subías, G., Proietti, M. G., Blasco, J., Renevier, H., Hodeau, J. L. and Joly, Y.,Phys. Rev. B 63 (2001), 054110.

    Article  ADS  Google Scholar 

  12. Halasa, N. A., DePasquali, G. and Drickamer, H. G.,Phys. Rev. B 10 (1974), 154.

    Article  ADS  Google Scholar 

  13. Fei, Y., Frost, D. J., Mao, H. K., Prewitt, C. T. and Hausermann, D.,Amer. Mineralogist 84 (1999), 203.

    Google Scholar 

  14. Rozenberg, G. K., Hearne, G. R., Pasternak, M. P., Metcalf, P. A. and Honing, J. M.,Phys. Rev. B 53 (1996), 6482 and references therein.

    Article  ADS  Google Scholar 

  15. Todo, S., Takeshita, N., Kanehara, T., Mori, T. and Môri, N.,J. App. Phys. 89 (2001), 7347.

    Article  ADS  Google Scholar 

  16. Sherman, D. M., In: S. K. Saxena (ed.),Advances in Physical Geochemistry, Vol. 7, Springer-Verlag, 1988, p. 113.

  17. Pasternak, M. P., Taylor, R. D., Jeanloz, R., Li, X., Nguyen, J. H. and McCammon, C. A.,Phys. Rev. Lett. 79 (1997), 5046.

    Article  ADS  Google Scholar 

  18. Berry, F. J., Skinner, S. and Thomas, M. F.,J. Phys. Condens. Matter 10 (1998), 215 and references therein.

    Article  ADS  Google Scholar 

  19. Iizumi, M., Koetzle, T. F., Shirane, G., Chikazumi, S., Matsui, M. and Todo, S.,Acta Crystallogr. B 38 (1982), 2121.

    Article  Google Scholar 

  20. Nasu, S.,Hyp. Interact. 90 (1975), 59.

    Article  ADS  Google Scholar 

  21. Rozenberg, G. Kh., Milner, A. P., Pasternak, M. P., Hearne, G. R. and Taylor, R. D.,Phys. Rev. B 58 (1998), 10283.

    Article  ADS  Google Scholar 

  22. Mizokawa, T., Namatame, H., Fujimori, A., Keyama, A. K., Kondoh, H., Kuroda, H. and Kosugi, N.,Phys. Rev. Lett. 67 (1991), 1638.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On the occasion of the 80th birthday of Hendrik de Waard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasternak, M.P. Breakdown of the Verwey-Mott localization hypothesis in magnetite. Hyperfine Interact 151, 253–261 (2003). https://doi.org/10.1023/B:HYPE.0000020416.28201.be

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYPE.0000020416.28201.be

Keywords

Navigation