Skip to main content
Log in

Charge transfer model for quadrupole interactions and binding energies of point defects with111In/Cd probes in cubic metals

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A simple model is used to predict nuclear quadrupole interactions caused by point defects at near-neighbor sites of probe atoms in cubic, metallic hosts. Also predicted are binding energies between the defects and impurity probe atoms. The model assumes that electrostatic interactions predominate over strain interactions. It is critically examined using data for111In/Cd probes next to solute atoms in noble metal hosts, obtained mostly by K. Królas, and next to vacancies in metals and intermetallic phases. The magnitude of quadrupole interactions is found to correlate well with charge transfer between host metal and defect. Charge transfer is taken to be proportional to the difference between work functions of the defect and host elements. Anansatz is proposed for the work function of a vacancy. Good correlations are obtained between experimental and calculated interactions for the generally oversized111In/Cd probe. The charge transfer model is believed to be applicable for other probes that are oversized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwarz, K., Blaha, P. and Madsen, G. K. H.,Comput. Phys. Comm. (2001).

  2. de Boer, F. R.et al., Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1988.

    Google Scholar 

  3. Bakker, H.,Enthalpies in Alloys: Miedema’s Semi-Empirical Model, Trans. Tech. Publications, Switzerland, 1998.

    Google Scholar 

  4. Sigalas, M., Papaconstantopoulos, D. A. and Bacalis, N. C.,Phys. Rev. B 45 (1992), 5777.

    Article  ADS  Google Scholar 

  5. Schatz, G. and Weidinger, A.,Nuclear Condensed Matter Physics, Wiley, New York, 1996.

    Google Scholar 

  6. Recknagel, E., Schatz, G. and Wichert, Th., In J. Christiansen (ed.),Hyperfine Interactions of Radioactive Nuclei, Vol. 31,Topics in Current Physics, Springer, p. 133.

  7. Pleiter, F. and Hohenemser, C.,Phys. Rev. B 25 (1982), 106.

    Article  ADS  Google Scholar 

  8. Collins, G. S., Shropshire, S. L. and Fan, J.,Hyp. Interact. 62 (1990), 1.

    Article  ADS  Google Scholar 

  9. Królas, K., Experimental studies of screening charge effects for impurities in Cu, Ag and Au, Report 1184/PL, Institute of Nuclear Physics, Krakow, 1982.

    Google Scholar 

  10. Królas, K.,Hyp. Interact. 60 (1989), 581.

    Article  Google Scholar 

  11. Królas, K.,Phys. Lett. 85A (1981), 107.

    ADS  Google Scholar 

  12. Sternik, M., Królas, K. and Lindgren, B.,Hyp. Interact. 60 (1990), 873.

    Article  ADS  Google Scholar 

  13. Baumvol, I. J. R.et al., Phys. Rev. B 22 (1980), 5115.

    Article  ADS  Google Scholar 

  14. Butt, R., Haas, H. and Rinneberg, H.,Phys. Lett. 60A (1977), 323.

    ADS  Google Scholar 

  15. Zawislak, F. C.et al., Phys. Rev. Lett. 38 (1977), 427.

    Article  ADS  Google Scholar 

  16. Sielemann, R., Metzner, H., Hunger, E. and Klaumuenzer, S.,Phys. Lett. 117A (1986), 87.

    ADS  Google Scholar 

  17. Sielemann, R., Metzner, H., Butt, R., Klaumuenzer, S., Haas, H. and Vogl, G.,Phys. Rev. B 25 (1982), 5555.

    Article  ADS  Google Scholar 

  18. Weidinger, A., Wessner, R., Recknagel, E. and Wichert, Th.,Nucl. Inst. Meth. 182/183 (1981), 509.

    Article  Google Scholar 

  19. van der Kolk, G. J., Post, K., van Veen, A., Pleiter, F. and de Hosson, J. Th. M.,Radiation Effects 84 (1985), 131.

    Article  Google Scholar 

  20. Mueller, H. G. and Hahn, H.,Phil. Mag. A 50 (1984), 71.

    Article  Google Scholar 

  21. Collins, G. S., Sinha, P. and Wei, M.,Hyp. Interact. C(1) (1996), 380.

    Google Scholar 

  22. Zacate, M. O. and Collins, G. S.,Defect and Diffusion Forum 194–199 (2001), 383.

    Google Scholar 

  23. Collins, G. S., Peng, L. S.-J. and Zacate, M. O.,Defect and Diffusion Forum 213–215 (2003), 107.

    Google Scholar 

  24. Collins, G. S., unpublished.

  25. Collins, G. S. and Sinha, P.,Hyp. Interact. 130 (2000), 151.

    Article  ADS  Google Scholar 

  26. Collins, G. S., Fan, J. and Bai B., In M. V. Nathalet al. (eds.),Structural Intermetallics, The Minerals, Metals & Materials Society, 1997, p. 43.

  27. Fan, J., Ph.D. dissertation, Washington State University, 1992 (unpublished).

  28. Zawislak, F. C.et al., Phys. Rev. Lett. 38 (1977), 427.

    Article  ADS  Google Scholar 

  29. Cranshaw, T. E.,J. Phys. F 10 (1980), 323.

    Article  Google Scholar 

  30. Cranshaw, T. E.,Journal de Physique, Colloque C2 40(Suppl. 3) 1979), C2-167-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Collins.

Additional information

On the occasion of the 80th birthday of Hendrik de Waard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, G.S., Zacate, M.O. Charge transfer model for quadrupole interactions and binding energies of point defects with111In/Cd probes in cubic metals. Hyperfine Interact 151, 77–91 (2003). https://doi.org/10.1023/B:HYPE.0000020405.38846.1b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYPE.0000020405.38846.1b

Key words

Navigation