Skip to main content
Log in

Hatching Rate and Hatching Success with and Without Isolation of Zooplankton Resting Stages

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton resting egg banks accumulate resting stages of various zooplankton species that are active in different habitats and different periods of the year. As such, hatching of resting eggs from lake sediments may potentially be very useful in zooplankton diversity studies. In this study, we tested whether the efficiency of the cost-effective technique is increased by isolating the resting eggs from the sediment prior to incubation. Isolation of the eggs was advantageous for the overall hatching success (+26% after 36 days of incubation compared to incubation of sediment). Furthermore, isolation of resting eggs makes egg bank diversity analyses less time consuming in two ways. (1) It reduced the time needed for the eggs to hatch with on average 35%. In the isolation treatment all responsive resting eggs hatched within the first 4 weeks of incubation, while in the non-isolation treatment neither the cumulative number of macrozooplankton hatchlings nor the cumulative number of hatched cladoceran species levelled off after 36 days of incubation. (2) In contrast to the non-isolation treatment, where large differences occurred between taxa in incubation time, isolation reduced such inter-specific differences, so that even very short incubation periods kept bias within acceptable limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnott, S. E., N. D. Yan, J. J. Magnuson & T. M. Frost, 1999. Interannual variability and species turnover of crustacean zooplankton in Shield lakes. Canadian Journal of Fisheries Aquatic Sciences 56: 162-172.

    Google Scholar 

  • Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65-84.

    Google Scholar 

  • Cáceres, C. E., & N. G. Hairston, Jr., 1998. Benthic-pelagic coupling in planktonic crustaceans: the role of the benthos. Archiv fur Hydrobiologie Special Issues Advanced Limnology 52: 163-174.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1994. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth,144 pp.

  • Cottenie, K., N. Nuytten, E. Michels & L. De Meester, 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339-350.

    Google Scholar 

  • Dahms, H.-U., 1995. Dormancy in the Copepoda — an overview. Hydrobiologia 306: 199-211.

    Google Scholar 

  • De Stasio, B. T., Jr., 1989. The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70: 1377-1389.

    Google Scholar 

  • De Stasio, B. T., Jr., 1990. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnology and Oceanography 35: 1079-1090.

    Google Scholar 

  • Duggan, I. C., J. D. Green & R. J. Shiel, 2002. Rotifer resting egg densities in lakes of different trophic state, and their assessment using emergence and egg counts. Archiv für Hydrobiologie 153: 409-420.

    Google Scholar 

  • Flößner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden, The Netherlands, 428 pp.

    Google Scholar 

  • Folt, C. L. & C. W. Burns, 1999. Biological drivers of zooplankton patchiness. Trends in Evolution and Ecology 14: 300-305.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: a preservation technique for Cladocera. Limnology and Oceanography 18: 331-333.

    Google Scholar 

  • Havel, J. E., E. M. Eisenbacher & A. A. Black, 2000. Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks. Aquatic Ecology 34:63-76.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Søndergaard & S. F. Mitchell, 2003. Subfossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 321-330.

    Google Scholar 

  • Kobari, T. & S. Ban, 1998. Life cycles of two limnetic cyclopoid copepods, Cyclops vicinus and Thermocyclops crassus, in two different habitats. Journal of Plankton Research 20: 1073-1086.

    Google Scholar 

  • Kluttgen, B., U. Dulmer, M. Engels H. T. Ratte, 1994. ADAM, anartificial fresh-water for the culture of zooplankton. Water Research 28: 743-746.

    Google Scholar 

  • Lutz, R. V., N. H. Marcus & J. P. Chanton, 1992. Effects of low oxygen concentrations on the hatching and viability of eggs of marine calanoid copepods. Marine Biology 114: 241-247.

    Google Scholar 

  • Marcus, N. H., 1984a. Recruitment of copepod nauplii into the plankton: importance of diapause eggs and benthic processes. Marine Ecology 15: 47-54.

    Google Scholar 

  • Marcus, N. H., 1984b. Variation in the diapause response of Labidocera aestiva (Copepoda: Calanoida) from different latitudes and its importance in the evolutionary process. Biological Bulletin 166: 127-139.

    Google Scholar 

  • Marcus, N. H., 1990. Calanoid copepod, cladoceran, and rotifer eggs in sea-bottom sediments of northern Californian coastal waters: identification, occurrence and hatching. Marine Biology 105: 413-418.

    Google Scholar 

  • Michels, E., K. Cottenie, L. Neys, K. De Gelas, P. Coppin & L. De Meester, 2001. Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology 10: 1929-1938.

    PubMed  Google Scholar 

  • Murray, M. M. & N. H. Marcus, 2002. Survival and diapause egg production of the copepod Centropages hamatus raised on dinoflagellate diets. Journal of Experimental Marine Biology and Ecology 270: 39-56.

    Google Scholar 

  • Onbé, T., 1978. Sugar flotation method for the sorting the resting eggs of marine cladocerans and copepods from sea-bottom sediment. Bulletin Japanese Society of Scientific Fisheries 44: 1411.

    Google Scholar 

  • Paffenhöfer, G. A. & R. P. Harris, 1979. Laboratory culture of marine holozooplankton and its contribution to studies of marine planktonic food webs. Advances in Marine Biology 16: 211-308.

    Google Scholar 

  • Schwartz, S. S. & P. D. N. Hebert, 1987. Methods for the activation of the resting eggs of Daphnia. Freshwater Biology 17: 373-379.

    Google Scholar 

  • Sorgeloos, P., 1973. First report on the triggering effect of light on the hatching mechanism of Artemia salina dry cysts. Marine Biology 22: 75-76.

    Google Scholar 

  • Verschuren, D. & L. F. Marnell, 1997. Fossil zooplankton and the historical status of Westslope Cutthroat Trout in a headwater lake of Glacier National Park, Montana. Transactions of American Fisheries Society 126: 21-34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandekerkhove, J., Niessen, B., Declerck, S. et al. Hatching Rate and Hatching Success with and Without Isolation of Zooplankton Resting Stages. Hydrobiologia 526, 235–241 (2004). https://doi.org/10.1023/B:HYDR.0000041598.68424.fc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000041598.68424.fc

Navigation