Skip to main content

Advertisement

Log in

Bloom of Picocyanobacteria in the Venice Lagoon During Summer–Autumn 2001: Ecological Sequences

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A dense bloom of picocyanobacteria with biomass of 10–50 g m−3(wet weight) and numerical density 5–20 × 106 cells ml−1 broke out in the Lagoon of Venice in July 2001. The share of picocyanobacteria of the total phytoplankton varied in the Venice lagoon in July–September from 60 to 98% depending on the vicinity of the site to the channel’s driving tidal currents. The washout of the picocyanobacterial biomass occurred during the ebbs to the shelf zone of the adjacent Adriatic sea. The biomass of picocyanobacteria in coastal Adriatic water was at that time up to 1.7 g m−3(w.w.) with the share of picocyanobacteria ranging from 70 to 90%. The rest consisted of small phytoflagellats. The contents of suspended and labile organic matter in water increased during the bloom by a factor of 5–15. The photosynthesis rate in upper water layers rose by about 2 orders of magnitude, attaining 3–5 g C m−3 day−1, with a decomposition rate of 2–3 mg O2 l−1 day−1. The residence time of inorganic phosphorus standing stock in water was found to be as short as 6–12 min. The populations of micro- and mesozooplankton were found to be inhibited in areas of intensive bloom. A significant mortality of key species for the local fishery, e.g. the Manila clam, Tapes philippinarum, was recorded in the lagoon in September–October.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • ARPA, Emilia Romagna Region, 1996. Eutrofizzazione delle acque costiere dell’Emilia Romagna, Rovigo, Annual Report, 234 pp.

  • Artegiani, A., D. Bregant, E. Paschini, N. Pinardi, F. Raicich & A. Russo, 1997. The Adriatic sea general circulation. Part II: Baroclinic circulation structure. Journal of Physical Oceanography 27: 1515–1532.

    Article  Google Scholar 

  • Barale, V., C. R. McClain & P. Malanotte-Rizzoli, 1986. Space and time variability of the surface color field in the northern Adriatic sea. Journal of Physical Oceanography 91: 12957–12974.

    Google Scholar 

  • Bianchi, F., F. Acri, L. Alberghi & M. M. Turchetto, 2000. Biological variability in the Venice lagoon. In Lasserre P. & A. Marzollo (eds), The Venice Lagoon Ecosystem. Man and Biosphere Series, UNESCO, 25: 97–125.

  • Caron, D. A., 1983. Techniques for emeration of microplankton, using epifluorescence microscopy. Applied and Environmental Microbiology 46: 491–498.

    PubMed  Google Scholar 

  • Casale, M., O. Giovanardi, F. Grimm, G. Orel & G. Pessa, 2001. Distribuzione ed abbondanza delle principali specie di molluschi bivalvi nella Laguna di Venezia nell’estate 1999, con particolare riguardo per Tapes philippinarum (Adams & Reeve, 1850). Biologia Marina Mediterranea 8: 413–423.

    Google Scholar 

  • Chorus, I., 2002. Cyanotoxins, Occurrence, Causes and Consequences. Springer, Heidelberg, 357 pp.

    Google Scholar 

  • Cossu, R., E. de Fraja Frangipane, D. Degobbis, A. A. Orio & G. Andreolotta, 1987. Pollution and eutrophication in the Venice lagoon. Water Science Technology 19: 813–822.

    CAS  Google Scholar 

  • Degobbis, D., 1989. Increased eutrophication in the Northern Adriatic. Marine Pollution Bulletin 20: 452–457.

    Article  CAS  Google Scholar 

  • Facca, C., A. Sfirso & G. Socal, 2002. Changes in abundance and composition of phytoplankton and microzoobenthos due to increased sediment fluxes in the Venice lagoon. Estuarine Coastal and Shelf Science 54: 773–792.

    Article  CAS  Google Scholar 

  • Glower, H. E. & J. Morris, 1981. Photosynthetic characteristics of coccoid cyanobacteria. Archives of Microbiology 129: 42–46.

    Google Scholar 

  • Granzotto, A., F. Pranzoi, A. Longo, F. Pranovi & P. Torricelli, 2001. La pesca nella laguna di Venezia. Rapporto Dipartimento Scienze Ambientali, Cà Foscari University, Venezia, 57 pp.

    Google Scholar 

  • Grimaldi, E., 1983. Aquacoltura ed ambiente. Trans. Congr. on Aquaculture Problems in Italy, Chioggia-Sottomarina, Institute of Scotti Bassani, Milan, 12-17 pp.

    Google Scholar 

  • Hobbie, J., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria of fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.

    CAS  PubMed  Google Scholar 

  • Krempkin, D. W. & C. W. Sullivan, 1981. The seasonal abundance, vertical distribution and relative microbial biomass of chroococcoid cyanobacteria at a station in southern California coastal waters. Canadian Journal of Microbiology 27: 1341–1344.

    Google Scholar 

  • Lavallée, B. F. & F. R. Pick, 2002. Picocyanobacteria abundance in relation to growth and loss rates in oligotrophic to mesotrophic lakes. Aquatic Microbiology and Ecology 27: 37–46.

    Google Scholar 

  • Marcomini, A., A. Sfirso, B. Pavoni & A. A. Orio, 1995. Eutrophication of the lagoon of Venice. In Mc Comb A. J. (ed.), Eutrophic Shallow Estuaries and Lagoons. CRC Press, Boca Raton, Florida, USA: 59–80.

    Google Scholar 

  • Nakamura, Y., S. Sasaki, J. Hiromi & K. Fukami, 1993. Dynamics of picocyanobacteria in the Seto sea, Japan. Marine Ecology Progress Series 96: 117–124.

    Google Scholar 

  • Ning, X., J. E. Cloem & B. E. Cole, 2000. Variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnology and Oceanography 45: 695–702.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Y. R. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York, 173 pp.

    Google Scholar 

  • Perin, G. B. & A. Gabelli, 1983. Inquinamento chimico della Laguna di Venezia: contaminanti di origine urbana e industriale nelle acque. Acqua Aria 6: 615–621.

    Google Scholar 

  • Provincia di Venezia, 2001. Concessione attività di venericoltura in acque marine interne. Anno 2001. Settore Caccia, Pesca e Polizia Provinciale. Unità operativa Caccia e Pesca. Registrazione CED no 102479. Allegato D.

    Google Scholar 

  • Riegman, R. & L. R. Mur, 1986. Phytoplankton growth and phosphate uptake for P-limitation. Limnology and Oceanography 31: 983–988.

    Article  CAS  Google Scholar 

  • Rippka, R., 1972. Photoheterotrophy and chemoheterotrophy among unicellular cyanobacteria. Archives of Microbiology 87: 93–98.

    Google Scholar 

  • Rossi, R., 2000. Elementi di valutazione ecologica, economica e sociale per fronteggiare la flessione produttiva di vongole filippine nell’Alto Adriatico. MiPAF, Ministry of Agricultural and Forest Politics. Final report, Project 5C02, 64 pp.

  • Rossi, R. & S. Cataudella, 1998. La produzione ittica della valle di Comacchio. Laguna (Ferrara), 5(Suppl. ¦): 67–84.

    Google Scholar 

  • Sfriso, A., 1996. Decrease production and changes macrophyte typology and distribution in the Venice lagoon. Inquinamento 5: 80–88.

    Google Scholar 

  • Sfriso, A., B. Pavoni, A. Marcomini & A. Orio, 1992. Macroalgae, nutrient cycles and pollutions in the lagoon of Venice. Estuaries 15: 517–528.

    CAS  Google Scholar 

  • Sfriso, A., A. Marcomini & B. Pavoni, 1994. Annual nutrient exchanges between the central lagoon of Venice and the northern Adriatic sea. Science of the Total Environment 156: 77–92.

    Article  CAS  Google Scholar 

  • Shmidt, A., 1988. Sulfur metabolism in cyanobacteria. In Backer L. & M. Glazek (eds), Methods of Enzymology. Acadamic Press, New York, 167: 572–583.

    Google Scholar 

  • Socal, G., F. Bianchi & L. Alberghi, 1999. Effects of thermal pollution and nutrient discharges on a spring phytoplankton bloom in the industrial area of Venice lagoon. Vie et Milieu 49: 19–31.

    Google Scholar 

  • Sorokin, P. Yu., Yu. I. Sorokin, O. Yu. Zakuskina & G.-P. Ravagnan, 2002. On the changing ecology of Venice lagoon. Hydrobiologia, in press.

  • Sorokin, Yu. I., 1982. Microbial sulphate reduction in bottom sediments of some Italian bodies of water. Hydrobiology Journal Kiev 18: 38–42.

    CAS  Google Scholar 

  • Sorokin, Yu. I., 1998. Report on the scientific results of ecological studies in the Venice lagoon. ROSTE. UNESCO in Venice, 49 pp.

    Google Scholar 

  • Sorokin, Yu. I., 1999a. Radioisotopic Methods in Hydrobiology. Springer, Heidelberg, 323 pp.

    Google Scholar 

  • Sorokin, Yu. I., 1999b. Aquatic Microbial Ecology. Backhuys, Leiden, 245 pp.

    Google Scholar 

  • Sorokin, Yu. I. & O. Giovanardi, 1995. Trophic characteristics of the Manila clam Tapes philippinarum. ICES Journal Marine Science 52: 853–862.

    Article  Google Scholar 

  • Sorokin, Yu. I., R. Boscolo, 2002. La moria di vongole nell’estate 2001 in Laguna di Venezia era prevedibile. In causa una fioritura inusuale di picocianobatteri. Chioggia, Rivista di studi e ricerche 20: 55–60.

    Google Scholar 

  • Sorokin, Yu. I., P. Yu. Sorokin & A. Gnes, 1996a. Structure and functioning of antropogenically transformed Comacchio lagoon ecosystem (Ferrara, Italy). Marine Ecology Progress Series 133: 57–71.

    Google Scholar 

  • Sorokin, Yu. I., P. Yu. Sorokin, O. Giovanardi & L. Dallavenezia, 1996b. Study of the ecosystem of the Venice lagoon with emphasis on anthropogenic impact. Marine Ecology Progress Series 141: 247–261.

    Google Scholar 

  • Sorokin, Yu. I., F. Dallocchio, F. Gelli & L. Pregnolato, 1996c. Phosphorus metabolism in anthropogenically transformed Comacchio lagoons. Journal of Sea Research 35: 243–250.

    Article  Google Scholar 

  • Sorokin, Yu. I., P. Yu. Sorokin & O. Yu. Zakuskina, 1998. Microplankton and its function in zones of shallow hydrotherms in western Pacific. Journal of Plankton Research 20: 1015–1031.

    Google Scholar 

  • Sorokin, Yu. I., P. Yu. Sorokin & G. Ravagnan, 1999a. Analysis of lagoonal ecosystem in the Po river delta associated with intensive aquaculture. Estuarine Coastal and Shelf Science 48: 325–341.

    Article  CAS  Google Scholar 

  • Sorokin, Yu. I., O. Giovanardi, F. Pranovi & P. Yu. Sorokin, 1999b. Need for restricting bivalve culture in the southern basin of the Venice lagoon. Hydrobiologia 400: 141–148.

    Article  Google Scholar 

  • Stanier, G. H., 1977. Position of cyanobacteria in the world of phototrophs. Carlsberg Res. Comm. 42: 77–98.

    Article  CAS  Google Scholar 

  • Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems. Canadian Journal of Fishes and Aquatic Science 43: 2472–2503.

    Article  Google Scholar 

  • Stockner, J. G., C. Callieri & G. Cronberg, 2000. Picoplankton and other non-blooming cyanobacteria in lakes. In Whitton B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer, Dordrecht: 125–231.

    Google Scholar 

  • Tchislenko, L. L., 1968. The nomograms for estimation of weight of aquatic animals after their size. Nauka, Leningrad, 105 pp (in Russian).

    Google Scholar 

  • Thomas, W. H. & A. N. Dodson, 1969. Effects of phosphate on cell division rates and geld of a tropical marine diatom. The Biological Bulletin 134: 199–208.

    Google Scholar 

  • Todini, E. & A. Bizzarri, 1988. Eutrophication in the coastal area of Emilia Romagna. UNESCO Bulletin on Marine Science 49: 143–152.

    Google Scholar 

  • Verity, P. G. & T. A. Villareal, 1986. The relative food value of cyanobacteria and other algae for tintinnid ciliates. Archivies Protistenk 131: 71–84.

    Google Scholar 

  • Viaroli, P., R. Azzoni & M. Bartoli, 2001. Trophic conditions and distrophic outbrakes in the Sacca di Goro lagoon. In Farranda F. M. (ed.), Mediterranean Ecosystem. Springer, Italia: 164–174.

    Google Scholar 

  • Vollenveider, R., 1992. Marine Coastal Eutrophication. Elsevier, Amsterdam, 950 pp.

    Google Scholar 

  • Zore, M., 1958. Some new observations on the system of Adriatic currents. Rapp. P-V. RCIESM 14: 47–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, P., Sorokin, Y., Boscolo, R. et al. Bloom of Picocyanobacteria in the Venice Lagoon During Summer–Autumn 2001: Ecological Sequences. Hydrobiologia 523, 71–85 (2004). https://doi.org/10.1023/B:HYDR.0000033096.14267.43

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000033096.14267.43