Skip to main content

Advertisement

Log in

Genetic variation in a desert aquatic snail (Nymphophilus minckleyi) from Cuatro Ciénegas, Coahuila, Mexico

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nymphophilus minckleyi is a hydrobiid snail endemic to the freshwater spring ecosystem of Cuatro Ciénegas, Mexico. We used seven allozyme loci to examine the genetic substructure of N. minckleyi from 14 sites (subpopulations) in the basin and to test the hypothesis that spring pools in Cuatro Ciénegas are separated into seven hydrologically distinct drainages. Hierarchical F-statistics suggest significant population structure exists among the fourteen populations but not among the seven proposed drainages. Cluster analysis of Nei’s genetic distance did not show populations grouping according to drainages, although it did reveal alternative clusters. We found two distinct morphotypes that were supported as genetically distinct groups by the allozyme data. Genetic studies of vagile species in desert spring ecosystems can be used to reveal hydrologic connections and identify genetically unique sub-populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acquaah, G., 1992. Practical Protein Electrophoresis for Genetic Research. Dioscorides Press, Portland, OR.

    Google Scholar 

  • Avise, J. C., 1994. Molecular Markers, Natural History, and Evolution. Chapman & Hall, New York, NY.

    Google Scholar 

  • Backeljau, T., L. De Bruyn, H. De Wolf, K. Jordaens, S. Van Dongen & B. Winnepenninckx, 1996. Multiple UPGMA and Neighbor-joining trees and the performance of some computer packages. Molecular Biology and Evolution 13: 309–313.

    CAS  Google Scholar 

  • Bandoni, S. M., M. Mulvey, D. K. Koech & E. S. Loker, 1990. Genetic structure of Kenyan populations of Biomphalaria pfeifferi (Gastropoda: Planorbidae). Journal of Molluscan Studies 56: 383–391.

    Google Scholar 

  • Barr, T. C., Jr. & J. R. Holsinger, 1985. Speciation in cave faunas. Annual Review of Ecology and Systematics 16: 313–337.

    Article  Google Scholar 

  • Bohonak, A. J., 1999. Dispersal, gene flow and population structure. The Quartarterly Review of Biology 74: 21–45.

    Article  CAS  Google Scholar 

  • Chambers, S. M., 1980. Genetic divergence between populations of Goniobasis (Pleuroceridae) occupying different drainage systems. Malacologia 20: 63–81.

    Google Scholar 

  • Clayton, J. W. & D. N. Tretiak, 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada 29: 1169–1172.

    CAS  Google Scholar 

  • Colgan, D. J. & W. F. Ponder, 1994. The evolutionary consequences of restrictions on gene flow: Examples from hydrobiid snails. The Nautilus, Supplement 2: 25–43.

    Google Scholar 

  • Contreras-Balderas, A. J., 1984. Birds from Cuatro Ciénegas, Coahuila, México. Journal of the Arizona-Nevada Academy of Science 19: 77–79.

    Google Scholar 

  • Crowley, L. E. L. M. & W. Ivantsoff, 1990. A second hardyhead, Craterocephalus gloveri (Pisces: Atherinidae), from Dalhousie Springs, central Australia. Ichthyological Exploration of Freshwaters 1: 113–122.

    Google Scholar 

  • Darwin, C., 1878. Transplantation of shells. Nature 18: 120–121.

    Google Scholar 

  • Darwin, C., 1882. On the dispersal of fresh-water bivalves. Nature 25: 529–530.

    Google Scholar 

  • Deacon, J. E. and C. D. Williams, 1991. Ash Meadows and the legacy of the Devils Hole pupfish. In Minckley, W. L. & J. E. Deacon (eds), Battle Against Extinction: Native Fish Management in the American West. University of Arizona Press, Tucson, AZ.: 69–87.

    Google Scholar 

  • Dillon, R. T. J. & C. Lydeard, 1998. Divergence among mobile populations of the pleurocerid snail genus, Leptoxis, estimated by allozyme electrophoresis. Malacologia 39: 113–121.

    Google Scholar 

  • Dinger, E. C., 2001. Aquatic Invertebrates of Cuatro Ciénegas, Coahuila, Mexico and Effects of Fish on Stromatolite Invertebrate Assemblages. Department of Biology. Northern Arizona University, Flagstaff, AZ.

    Google Scholar 

  • Falniowski, A. M. & K. M. Szarowska, 1999. Homozygote excess and gene flow in the spring snail Bythinella (Gastropoda: Prosobranchia). Journal of Zoological Systematics and Evolutionary Research 37: 165–175.

    Google Scholar 

  • Field, M. S., R. G. Wilhelm, J. F. Quinlan & T. J. Aley, 1995. An assessment of the potential adverse properties of fluorescent tracer dyes used for groundwater tracing. Environmental Monitoring and Assessment 38: 75–96.

    Article  CAS  Google Scholar 

  • Goudet, J, 2001. FSTAT, a program to estimate and test gene diversities and fixation indices. Updated from Goudet (1995). Available from http://www.unil.ch/izea/softwares/fstat.html.

  • Hartl, D. L. & A. G. Clark, 1997. Principles of Population Genetics. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Hershler, R., 1985. Systematic revision of the Hydrobiidae (Gastropoda: Rissoacea) of the Cuatro Ciénegas basin, Coahuila, Mexico. Malacologia 26: 31–123.

    Google Scholar 

  • Hershler, R. and L. C. Hayek, 1988. Shell variation of springsnail populations in the Cuatro Ciénegas Basin, Mexico: Preliminary analysis of limnocrene fauna. The Nautilus 102: 56–64.

    Google Scholar 

  • Hershler, R. & W. F. Ponder, 1998. A review of morphological characters of hydrobioid snails. Smithsonian Contributions to Zoology 600: 55.

    Google Scholar 

  • Hodges, M. A., F. W. Allendorf, 1998. Population Genetics and Pattern of Larval Dispersal of the Endemic Hawaiian Freshwater Amphidromous Gastropod Neritina granosa (Prosobranchia: Neritidae). Pacific Science 52: 237–249.

    Google Scholar 

  • Jarne, P. & B. Delay, 1990. Population genetics of Lymnaea peregra (Mueller) (Gastropoda: Pulmonata) in Lake Geneva. Journal of Molluscan Studies 56: 317–321.

    Google Scholar 

  • Jarne, P. & B. Delay, 1991. Population genetics of freshwater snails. Trends in Ecology and Evolution 6: 383–386.

    Article  Google Scholar 

  • Johnson, K. M., 2000. An Analysis of the Genetic Population Structure of Paracerceis sculpata in the Gulf of California. Department of Biology, Northern Arizona University, Flagstaff, AZ.

    Google Scholar 

  • Kimura, M. and J. F. Crow, 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.

    CAS  PubMed  Google Scholar 

  • Meyers, M. J., F. A. H. Sperling & V. H. Resh, 2001. Dispersal of two species of Trichoptera from desert springs: Conservation implications for isolated vs. connected populations. Journal of Insect Conservation 5: 207–215.

    Article  Google Scholar 

  • Miller, M. P., 1997. Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population data. Computer software distributed by the author.

  • Minckley, W. L., 1969. Environments of the Bolsón of Cuatro Ciénegas, Coahuila, Mexico, with special reference to the aquatic biota. Texas Western Press., El Paso, Texas. Science Series 2: 1–65.

    Google Scholar 

  • Minckley, W. L., 1984a. Cuatro Ciénegas fishes: Research review and a local test of diversity versus habitat size. Journal of the Arizona-Nevada Academy of Science 19: 13–21.

    Google Scholar 

  • Minckley, W. L., 1984b. Three decades near Cuatro Ciénegas, Mexico: Photographic documentation and a plea for area conservation. Journal of the Arizona-Nevada Academy of Science 26: 89–118.

    Google Scholar 

  • Moritz, C., 1994. Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology and Evolution 9: 373–375.

    Article  Google Scholar 

  • Mulvey, M., M. C. Newman & D. S. Woodruff, 1998. Genetic differentiation among West Indian populations of the shistosome-transmitting snail Biomphalaria glabrata. Malacologia 29: 309–317.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. American Naturalist 106: 283–292.

    Article  Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–390.

    Google Scholar 

  • O’Brien, C. & D. W. Blinn, 1999. The endemic spring snail Pyrgulopsis montezumensis in a high CO sub2 environment: importance of extreme chemical habitats as refugia. Freshwater Biology 42: 225–234.

    Article  Google Scholar 

  • Ponder, W. F., 1994. Australian freshwater Mollusca: conservation priorities and indicator species. Memoirs of the Queensland Museum 36: 191–196.

    Google Scholar 

  • Ponder, W. F., P. Eggler & D. J. Colgan, 1995. Genetic differentiation of aquatic snails (Gastropoda: Hydrobiidae) from artesian springs in arid Australia. Biological Journal of the Linnaean Society 56: 553–596.

    Article  Google Scholar 

  • Preziosi, R. F. & D. J. Fairbairn, 1992. Genetic population structure and levels of gene flow in the stream dwelling waterstrider, Aquarius (= Gerris remigis (Hemiptera: Gerridae). Evolution 46: 430–444.

    Google Scholar 

  • Rankevich, D. L., B. E. Nevo, A. Beiles & Z. Arad, 1996. Genetic and physiological adaptations of the prosobranch landsnail Pomatias olivieri to microclimatic stresses on Mount Carmel, Israel. Israel Journal of Zoology 42: 425–441.

    Google Scholar 

  • Rees, W. J., 1965. The aerial dispersal of mollusca. Proceedings of the Malacological Society of London 36: 269–282.

    Google Scholar 

  • Reynolds, J., B. S. Weir & C. C. Cockerham, 1983. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105: 767–779.

    Google Scholar 

  • Ross, T. K., 1999. Phylogeography and conservation genetics of the Iowa Pleistocene snail. Molecular Ecology 8: 1363–1373.

    CAS  PubMed  Google Scholar 

  • Secretaria de Medio Ambiente, R. N. y. P. S., 1994. Decree of the Cuatro Ciénegas Natural Protected Area.

  • Secretaria de Medio Ambiente, R. N. y. P. S., 1999. Programa de Manejo del Area de Protección de Flora y Fauna Cuatro Ciénegas. Instituto Nacional de Ecología, Tlacopac, México.

    Google Scholar 

  • Shepard, W. D., 1993. Desert springs-both rare and endangered. Aquatic Conservation: Marine and Freshwater Ecosystems 3: 351–359.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: the Principles and Practice of Statistics in Biological Research. W. H. Freeman and Co., New York.

    Google Scholar 

  • Swofford, D. L., R. B. Selander & W. C. Black IV, 1997. BIOSYS-2: A Computer Program for the Analysis of Allelic Variation in Genetics, Ft. Collins, CO.

  • Tafelski, R. D., 1998. Unpublished report to the Nature Conservancy, ‘Groundwater reconnissance of the Cuatro Ciénegas area.’ HRS Consultants, Inc. Lakewood, CO.

    Google Scholar 

  • Takezaki, N., 1998. Tied trees generated by distance methods of phylogenetic reconstruction. Molecular Biology and Evolution 15: 727–737.

    CAS  PubMed  Google Scholar 

  • Taylor, D. W., 1966. A remarkable snail fauna from Coahuila, Mexico. The Veliger 9: 152–223.

    Google Scholar 

  • Van Dongen, S., 1995. How should we bootstrap allozyme data? Heredity 74: 445–447.

    Google Scholar 

  • Van Dongen, S. & T. Backeljau, 1995. One-and two-sample tests on single locus inbreeding coefficients using the bootstrap. Heredity 74: 127–133.

    Google Scholar 

  • Weir, B. S., 1996. Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sinauer Associates, Inc. Publishers, Sunderland, MA.

    Google Scholar 

  • Weir B. S. and C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Williams, J. E., D. B. Bowman, J. E. Brooks, A. A. Echelle, R. J. Edwards, D. A. Hendrickson & J. J. Landye, 1985. Endangered aquatic ecosystems in North American deserts with a list of vanishing fishes of the region. Journal of the Arizona-Nevada Academy of Science 20: 1–61.

    Google Scholar 

  • Woodruff, D., M. Mulvey & M. Yipp, 1985. Population genetics of Biomphalaria straminea in Hong Kong. Journal of Heredity 76: 355–360.

    CAS  PubMed  Google Scholar 

  • Wright, S., 1973. The Origin of the F-statistics for Describing the Genetic Aspects of Population Structure. University of Hawaii Press, Honolulu.

    Google Scholar 

  • Wright, S., 1978. Evolution and the Genetics of Populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Zeidler, W. and W. F. Ponder (eds), 1989. Natural History of Dalhousie Springs. South Australian Museum, Adelaide.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moline, A.B., Shuster, S.M., Hendrickson, D.A. et al. Genetic variation in a desert aquatic snail (Nymphophilus minckleyi) from Cuatro Ciénegas, Coahuila, Mexico. Hydrobiologia 522, 179–192 (2004). https://doi.org/10.1023/B:HYDR.0000029972.80491.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000029972.80491.d3