Skip to main content

Size-specific effects of increased sediment loads on gastropod communities in Lake Tanganyika, Africa

Abstract

The remarkable biodiversity of the littoral zone of Lake Tanganyika appears to be at risk through increasing sediment input caused by anthropogenic pressures. An in-situ field experiment was done to investigate the effects of increased sediment loads on the size-structure of gastropod communities on a rocky shore site in the lake. Gastropods were removed prior to the addition of sediment, and subsequent further removals were done after seven days and six months. Relative to controls, mean size of individuals of both Lavigeria grandis (Smith) and Lavigeria sp. Q decreased following the addition of sediment, while that of Lavigeria sp. P increased. A subsequent laboratory experiment found that survivorship of larger individuals of Lavigeria grandis was less than smaller individuals in the sediment-impacted treatment. It is hypothesised that decreased algal availability on sediment-impacted rock surface increased starvation of larger snails. Alterations to the size-structure of Lavigeria sp. P populations appear related to intraspecific differences in competitive ability. These results highlight the complex and unpredictable effects of increases in sediment loads on aquatic ecosystems and have implications for the conservation of littoral communities in sediment-impacted areas.

This is a preview of subscription content, access via your institution.

References

  • Aldridge, D. W., B. S. Payne & A. C. Miller, 1987. The effects of intermittent exposure to suspended solids and turbulence on three species of freshwater mussels. Environmental Pollution 45: 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Alin, S. R., A. S. Cohen, R. Bills, M. M. Gashagaza, E. Michel, J. J. Tiercelin, K. Martens, P. Coveliers, S. K. Mboko, K. West, M. Soreghan, S. Kimbadi & G. Ntakimazi, 1999. Effects of landscape disturbance on animal communities in Lake Tanganyika, East Africa. Conservation Biology 13: 1017–1033.

    Article  Google Scholar 

  • Boles, G. R., 1981. Macroinvertebrate colonization of replacement substrate below a hypolimnial release reservoir. Hydrobiologia 78: 133–146.

    Google Scholar 

  • Bruton, M. N., 1985. The effects of suspensoids on fish. Hydrobiologia 125: 221–241.

    Article  Google Scholar 

  • Chutter, F. M., 1969. The effects of sand and silt on the invertebrate fauna of streams and rivers. Hydrobiologia 34: 57–76.

    Google Scholar 

  • Cohen, A. S., R. Bills, C. Z. Cocquyt & A. G. Caljon, 1993a. The impact of sediment pollution on biodiversity in Lake Tanganyika. Conservation Biology 7: 667–677.

    Article  Google Scholar 

  • Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993b. Estimating the age of formation of lakes-an example from Lake Tanganyika, East African Rift system. Geology 21: 511–514.

    Article  CAS  Google Scholar 

  • Cohen, A. S., 1994. Extinction in ancient lakes: biodiversity crises and conservation 40 years after J.L. Brooks. In Martens, K., B. Goddeeris & G. W. Coulter (eds), Speciation in ancient lakes. Archiv für Hydrobiologie Ergebnisse der Limnologie 44, Stuttgart: 451–479.

  • Cohen, A. S., 1995. Paleoecological approaches to the conservation biology of benthos in ancient lakes: a case study from Lake Tanganyika. Journal of the North American Benthological Society 14: 654–668.

    Google Scholar 

  • Commito, J. A., S. F. Thrush, R. D. Pridmore, J. E. Hewitt & V. J. Cummings, 1995. Dispersal dynamics in a wind-driven benthic system. Limnology and Oceanography 40: 1513–1518.

    Google Scholar 

  • Coulter, G.W., 1991. Composition of the flora and fauna. In Coulter, G. W. (ed), Lake Tanganyika and its life. Oxford University Press London: 200–274.

    Google Scholar 

  • Coulter, G. W., 1994. Lake Tanganyika. In Martens, K., B. Goddeeris & G. W. Coulter (eds), Speciation in ancient lakes. Archiv für Hydrobiologie Ergebnisse der Limnologie 44, Stuttgart: 13–18.

  • Davies-Colley, R. J., C. W. Hickey, J. M. Quinn & P. A. Ryan, 1992. Effects of clay discharges on streams. 1. Optical properties and epilithon. Hydrobiologia 248: 215–234.

    Article  Google Scholar 

  • De Roos, A. M., L. Persson & E. McCauley, 2003. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecology Letters 6: 473–487.

    Article  Google Scholar 

  • Diggle, P. J., K.-Y. Liang & S. L. Zeger, 1994. Analysis of Longitudinal Data. Oxford Science Publications, Oxford, 253 pp.

    Google Scholar 

  • Dokulil, M. T., 1994. Environmental control of phytoplankton productivity in turbulent turbid systems. Hydrobiologia 289: 65–72.

    Article  CAS  Google Scholar 

  • Donohue, I. & K. Irvine, 2003. Effects of sediment particle size composition on survivorship of benthic invertebrates from Lake Tanganyika, Africa. Archiv für Hydrobiologie 157: 131–144.

    Article  Google Scholar 

  • Donohue, I., E. Verheyen & K. Irvine, 2003. In situ experiments on the effects of increased sediment loads on littoral rocky shore communities in Lake Tanganyika, East Africa. Freshwater Biology 48: 1603–1616.

    Article  Google Scholar 

  • Donohue, I. & K. Irvine, 2004. Seasonal patterns of sediment loading and benthic invertebrate community dynamics in Lake Tanganyika, Africa. Freshwater Biology: 000: 000–000.

    Google Scholar 

  • Ellis, M. M., 1936. Erosion silt as a factor in aquatic environments. Ecology 17: 29–42.

    Google Scholar 

  • Emerson, C. W. & J. Grant, 1991. The control of soft-shell clam (Mya arenaria) recruitment on intertidal sandflats by bedload sediment transport. Limnology and Oceanography 36: 1288–1300.

    Article  Google Scholar 

  • Emson, R. H. & R. J. Faller-Fritsch, 1976. An experimental investigation into the effect of crevice availability on abundance and size-structure in a population of Littorina rudis (Maton): Gastropoda: Prosobranchia. Journal of Experimental Marine Biology and Ecology 23: 285–297.

    Article  Google Scholar 

  • Gillespie, G. R., 2002. Impacts of sediment loads, tadpole density, and food type on the growth and development of tadpoles of the spotted tree frog Litoria spenceri: an in-stream experiment. Biological Conservation 106: 141–150.

    Article  Google Scholar 

  • Graham, A. A., 1990. Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentrations in suspension. Hydrobiologia 199: 107–115.

    Article  Google Scholar 

  • Hart, R. C., 1986. Zooplankton abundance, community structure and dynamics in relation to inorganic turbidity, and their implications for a potential fishery in Lake le Roux, South Africa. Freshwater Biology 16: 351–371.

    Google Scholar 

  • Hart, R. C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwater Biology 19: 123–139.

    Google Scholar 

  • Herbert, W. M., J. S. Alabaster, M. C. Dart & R. Lloyd, 1961. The effect of china-clay wastes on trout streams. International Journal of Air and Water Pollution 5: 56–74.

    CAS  PubMed  Google Scholar 

  • Herbert, W. M. & J. C. Merkens, 1961. The effect of suspended mineral solids on the survival of trout. International Journal of Air and Water Pollution 5: 46–55.

    CAS  PubMed  Google Scholar 

  • Herbert, W. M. & J. M. Richards, 1963. The growth and survival of fish in some suspensions of solids of industrial origin. International Journal of Air and Water Pollution 7: 297–302.

    CAS  Google Scholar 

  • Hynes, H. B. N., 1970. The Ecology of Running Waters. Liverpool University Press, Liverpool, 555 pp.

    Google Scholar 

  • Lezzar, K. E., J. J. Tiercelin, M. De Batist, A. S. Cohen, T. Bandora, P. Van Rensbergen, C. Le Turdu, W. Mifundu & J. Klerkx, 1996. New seismic stratigraphy and late Tertiary history of the north Tanganyika Basin, East African rift system, deduced from multichannel and high-resolution reflection seismic data and piston core evidence. Basin Research 8: 1–28.

    Google Scholar 

  • Lind, O. T., T. H. Chrzanowski & L. Dávalos-Lind, 1997. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 353: 1–18.

    Article  CAS  Google Scholar 

  • Manirakiza, P., A. Covaci, L. Nizigiymana, G. Ntakimazi & P. Schepens, 2002. Persistent chlorinated pesticides and polychlorinated biphenyls in selected fish species from Lake Tanganyika, Burundi, Africa. Environmental Pollution 117: 447–455.

    Article  CAS  PubMed  Google Scholar 

  • Martin, P., B. Goddeeris & K. Martens, 1993. Oxygen concentration profiles in soft-sediment of Lake Baikal (Russia) near the Selenga Delta. Freshwater Biology 29: 343–349.

    CAS  Google Scholar 

  • Martin, P., L. Granina, K. Martens & B. Goddeeris, 1998. Oxygen concentration profiles in sediments of two ancient lakes: Lake Baikal (Siberia, Russia) and Lake Malawi (East Africa). Hydrobiologia 367: 163–174.

    Article  CAS  Google Scholar 

  • McCann, K. S., 2000. The diversity-stability debate. Nature 405: 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, J. M., R. J. Davies-Colley, C. W. Hickey, M. L. Vickers & P. A. Ryan, 1992. Effects of clay discharges on streams. 2. Benthic invertebrates. Hydrobiologia 248: 235–247.

    Article  Google Scholar 

  • Raffaelli, D. G. & R. N. Hughes, 1978. The effects of crevice size and availability on populations of Littorina rudis and Littorina neritoides. Journal of Animal Ecology 47: 71–83.

    Google Scholar 

  • Richardson, J. & I. G. Jowett, 2002. Effects of sediment on fish communities in East Cape streams, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 36: 431–442.

    Article  Google Scholar 

  • Roegner, C., C. Andre, M. Lindegarth, J. E. Eckman & J. Grant, 1995. Transport of recently settled soft-shell clams (Mya arenaria L.) in laboratory flume flow. Journal of Experimental Marine Biology and Ecology 187: 13–26.

    Article  Google Scholar 

  • Vandelannoote, A., H. Robberecht, H. Deelstra, F. Vyumvuhore, L. Bitetera & F. Ollevier, 1996. The impact of the River Ntahangwa, the most polluted Burundian affluent of Lake Tanganyika, on the water quality of the lake. Hydrobiologia 328: 161–171.

    Article  CAS  Google Scholar 

  • Worthington, E. B. & R. Lowe-McConnell, 1994. African lakes reviewed: creation and destruction of biodiversity. Environmental Conservation 21: 199–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Donohue, I., Irvine, K. Size-specific effects of increased sediment loads on gastropod communities in Lake Tanganyika, Africa. Hydrobiologia 522, 337–342 (2004). https://doi.org/10.1023/B:HYDR.0000029969.44130.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000029969.44130.80

  • Lake Tanganyika
  • sediment impacts
  • gastropods
  • size-structure
  • benthic invertebrates