Skip to main content
Log in

Density of red alder (Alnus rubra) in headwaters influences invertebrate and detritus subsidies to downstream fish habitats in Alaska

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the influence of red alder (Alnus rubra) stand density in upland, riparian forests on invertebrate and detritus transport from fishless headwater streams to downstream, salmonid habitats in southeastern Alaska. Red alder commonly regenerates after soil disturbance (such as from natural landsliding or timber harvesting), and is common along streams in varying densities, but its effect on food delivery from headwater channels to downstream salmonid habitats is not clear. Fluvial transport of invertebrates and detritus was measured at 13 sites in spring, summer and fall during two years (2000–2001). The 13 streams encompassed a riparian red alder density gradient (1–82% canopy cover or 0–53% basal area) growing amongst young-growth conifer (45-yr-old stands that regenerated after forest clearcutting). Sites with more riparian red alder exported significantly more invertebrates than did sites with little alder (mean range across 1–82% alder gradient was about 1–4 invertebrates m−3 water, and 0.1–1 mg invertebrates m−3 water, respectively). Three-quarters of the invertebrates were of aquatic origin; the remainder was of terrestrial origin. Aquatic taxa were positively related to the alder density gradient, while terrestrially-derived taxa were not. Streams with more riparian alder also exported significantly more detritus than streams with less alder (mean range across 1–82% alder gradient was 0.01–0.06 g detritus m−3 water). Based on these data, we predict that headwater streams with more riparian alder will provide more invertebrates and support more downstream fish biomass than those basins with little or no riparian alder, provided these downstream food webs fully utilize this resource subsidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaback, P. B., 1982. Dynamics of understory biomass in Sitka spruce-western hemlock forests of Southeast Alaska. Ecology 63: 1932–1948.

    Google Scholar 

  • Allan, J. D., 1995. Stream Ecology: Structure and Function of Running Waters. Chapman & Hall, London.

    Google Scholar 

  • Allan, J. D., M. S. Wipfli, J. P. Caouette, A. Prussian & J. Rodgers, 2003. Influence of streamside vegetation on terrestrial invertebrate subsidies to salmonid food webs. Canadian Journal of Fisheries and Aquatic Sciences 60: 309–320.

    Google Scholar 

  • Benda, L. & T. Dunne, 1997. Stochastic forcing of sediment supply to the channel network from landsliding and debris flow. Water Resources Research 33: 2849–2863.

    Google Scholar 

  • Beschta, R. L., R. E. Bilby, G. W. Brown, L. B. Holtby & T. D. Hofstra, 1987. Stream temperature and aquatic habitat: fisheries and forestry implications. In Salo, E. O. & T. W. Cundy (eds), Streamside Management: Forestry and Fishery Interactions. Contribution 57. University of Washington, Seattle: 191–232.

    Google Scholar 

  • Bilby, R. E. & P. A. Bisson, 1998. Function and distribution of large woody debris. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management. Springer Publishers, New York: 324–346.

    Google Scholar 

  • Bilby, R. E., B. R. Fransen, P. A. Bisson & J. K. Walter, 1998. Response of juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss) to the addition of salmon carcasses to two streams in southwestern Washington, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 55: 1909–1918.

    Google Scholar 

  • Binkley, D., K. Cromack & D. D. Baker, 1994. Nitrogen fixation by red alder: biology, rates, and controls. In Hibbs, D. E., D. S. DeBell & R. F. Tarrant (eds), The Biology and Management of Red Alder. Oregon State University Press, Corvallis: 57–72.

    Google Scholar 

  • Bisson, P. A. & R. E. Bilby, 1998. Organic matter and trophic dynamics. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management. Springer Publishers, New York: 373–398.

    Google Scholar 

  • Bjornn, T. C. & D. W. Reiser, 1991. Habitat requirements of salmonids in streams. American Fisheries Society Special Publication 19: 83–138.

    Google Scholar 

  • Borchardt, M. A., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology. Academic Press, San Diego: 183–227.

    Google Scholar 

  • Bramblett, R. G., M. D. Bryant & B. E. Wright, 2002. Seasonal movements and habitat use by juvenile steelhead in Southeast Alaska. Transactions of the American Fisheries Society 131: 498–506.

    Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift-A review. Hydrobiologia 166: 77–93.

    Google Scholar 

  • Burgherr, P. & E. I. Meyer, 1997. Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Archiv für Hydrobiologie 139: 101–112.

    Google Scholar 

  • Chapman, D. W. 1966. Food and space as regulators of salmonid populations in streams. American Naturalist 100: 345–357.

    Google Scholar 

  • Cuffney, T. F. & J. B. Wallace, 1988. Particulate organic matter export from three headwater streams: discrete versus continuous measurements. Canadian Journal of Fisheries and Aquatic Sciences 45: 2010–2016.

    Article  Google Scholar 

  • Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation: leaf litter that falls into streams influences communities of stream invertebrates. BioScience 39: 24–30.

    Google Scholar 

  • Duncan, W. F., M. A. Brusven & T. C. Bjornn, 1989. Energy flow response models for evaluation of altered riparian vegetation in three Southeast Alaskan streams. Water Research 23: 965–974.

    CAS  Google Scholar 

  • Friberg, N. & D. Jacobsen, 1994. Feeding plasticity of two detritivore-shredders. Freshwater Biology 32: 133–142.

    Google Scholar 

  • Giller, P. S. & B. Malmqvist, 1998. The biology of streams and rivers. Oxford University Press, New York.

    Google Scholar 

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems. BioScience 52: 905–916.

    Google Scholar 

  • Gregory, S. V. & P. A. Bisson, 1997. Degradation and loss of anadromous salmonid habitat in the Pacific Northwest. In Stouder, D. J., P. A. Bisson, & R. J. Naiman (eds), Pacific Salmon and their Ecosystems: Status and Future Options. Chapman and Hall, New York: 277–314.

    Google Scholar 

  • Groot, C. & L. Margolis, 1991. Pacific Salmon Life Histories. University of British Columbia Press, Vancouver.

    Google Scholar 

  • Harrington, C. A., J. C. Zasada & E. A. Allen, 1994. Biology of red alder (Alnus rubra Bong.). In Hibbs, D. E., D. S. DeBell & R. F. Tarrant (eds), The Biology and Management of Red Alder. Oregon State University Press, Corvallis, OR: 116–123.

    Google Scholar 

  • Hayes, J. W., J. D. Stark & K. A. Shearer, 2000. Development and test of a whole-lifetime foraging and bioenergetics growth model for drift-feeding brown trout. Transactions of the American Fisheries Society 129: 315–332.

    Google Scholar 

  • Hibbs, D. E., D. S. DeBell & R. F. Tarrant, 1994. The Biology and Management of Red Alder. Oregon State University Press, Corvallis, OR.

    Google Scholar 

  • Hulten, E., 1968. Flora of Alaska and neighboring territories. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Iversen, T. M., 1974. Ingestion and growth in Sericostoma personatum (Trichoptera) in relation to the nitrogen content of ingested leaves. Oikos 25: 278–282.

    Google Scholar 

  • Kawaguchi, Y. & S. Nakano, 2001. Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream. Freshwater Biology 46: 303–316.

    Google Scholar 

  • McComb, W. C., 1994. Red alder: interactions with wildlife. In Hibbs, D. E., D. S. DeBell & R. F. Tarrant (eds), The Biology and Management of Red Alder. Oregon State University Press, Corvallis, OR: 131–138.

    Google Scholar 

  • Meyer, J. L. & J. B. Wallace, 2001. Lost linkages and lotic ecology: rediscovering small streams. In Press, M. C., N. J. Huntly & S. Levin (eds), Ecology: Achievement and Challenge. Blackwell Scientific Publications, Oxford: 295–317.

    Google Scholar 

  • Mundie, J. H., 1974. Optimization of the salmonid nursery stream. Journal of the Fisheries Research Board of Canada 31: 1827–1837.

    Google Scholar 

  • Murai, S., 1964. Phytotaxomomical and geobotanical studies on genus Alnus in Japan. III. Taxonomy of whole world species and distribution of each sect. Government Forest Experiment Station Bulletin, Japan 171: 1–107.

    Google Scholar 

  • Naiman, R. J. & R. E. Bilby, 1998. River Ecology and Management. Springer Publishers, New York, New York.

    Google Scholar 

  • Nakano, S., H. Miyasaka & N. Kuhara, 1999. Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80: 2435–2441.

    Google Scholar 

  • Newton, M. & E. C. Cole, 1994. Stand development and successional implications: pure and mixed stands. In Hibbs, D. E., D. S. DeBell & R. F. Tarrant (eds), The Biology and Management of Red Alder. Oregon State University Press, Corvallis, Oregon: 106–115.

    Google Scholar 

  • NRC (National Research Council), 1996. Upstream: Salmon and Society in the Pacific Northwest. National Academy Press, Washington, DC.

    Google Scholar 

  • O’Hop, J. & J. B. Wallace, 1983. Invertebrate drift, discharge, and sediment relations in a southern Appalachian headwater stream. Hydrobiologia 98: 71–84.

    Google Scholar 

  • Piccolo, J. J. & M. S. Wipfli, 2002. Does red alder (Alnus rubra) along headwater streams increase the export of invertebrates and detritus from headwaters to fish-bearing habitats in southeastern Alaska? Canadian Journal of Fisheries and Aquatic Sciences 59: 503–513.

    Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Google Scholar 

  • Polis, G. A. & S. D. Hurd, 1996. Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147: 396–423.

    Google Scholar 

  • Richardson, J. S., 1991. Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology 72: 873–887.

    Google Scholar 

  • Rogers, L. E., R. L. Buschbom & C. R. Watson, 1977. Length-weight relationships of shrub-steppe invertebrates. Annals of the Entomological Society of America 70: 51–53.

    Google Scholar 

  • Sample, B. E., R. J. Cooper, R. D. Greer & R. C. Whitmore, 1993. Estimation of insect biomass by length and width. American Midland Naturalist 129: 234–240.

    Google Scholar 

  • SAS Institute, 1998. SAS/STAT User’s Guide, Version 6, 4th Edition. SAS Institute Inc., Cary, North Carolina.

    Google Scholar 

  • Sedell, J. R., F. J. Triska & N. S. Triska, 1975. The processing of conifer and hardwood leaves in two coniferous forest streams: I. Weight loss and associated invertebrates. Verhandlungen Internationale Vereinigung Limnologie 19: 1617–1627.

    Google Scholar 

  • Southwood, T. R. E., 1961. The number of species of insect associated with various trees. Journal of Animal Ecology 30: 1–8.

    Google Scholar 

  • USDA, 1999. Record of decision: Tongass National Forest land and resource management plan. United States Forest Service, Pacific Northwest Research Station, Alaska Region, FS-639.

    Google Scholar 

  • Wallace, J., B., T. F. Cuffney, J. L. Webster, G. J. Lugthart, K. Chung & B. S. Goldowitz, 1991. Export of fine organic particles from headwater streams: effects of seston, extreme discharges, and invertebrate manipulation. Limnology and Oceanography 36: 670–682.

    Article  CAS  Google Scholar 

  • Wallace, J. B., H. R. Ross & J. L. Meyer, 1982. Seston and dissolved organic carbon dynamics in a southern Appalachian stream. Ecology 63: 824–838.

    CAS  Google Scholar 

  • Waters, T. F., 1995. Sediment in Streams: Sources, Biological Effects and Control. American Fisheries Society Monograph 7. Bethesda, Maryland.

  • Wipfli, M. S., 1997. Terrestrial invertebrates as salmonid prey and nitrogen sources in streams: contrasting old-growth and young-growth riparian forests in southeastern Alaska, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 54: 1259–1269.

    Google Scholar 

  • Wipfli, M. S. & D. P. Gregovich, 2002. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshwater Biology 47: 957–969.

    Google Scholar 

  • Wipfli, M. S., J. P. Hudson & J. P. Caouette, 1998. Influence of salmon carcasses on stream productivity: response of biofilm and benthic macroinvertebrates in southeastern Alaska, USA. Canadian Journal of Fisheries and Aquatic Sciences 55: 1503–1511.

    Google Scholar 

  • Wipfli, M. S., R. L. Deal, P. E. Hennon, A. C. Johnson, R. T. Edwards, T. L. De Santo, T. Gomi, E. H. Orlikowska, M. D. Bryant, M. E. Schultz, C. LeSage, R. Kimbirauskus & D. V. D’Amore, 2003. Chapter 3. Compatible management of red alder-conifer ecosystems in southeastern Alaska. In Monserud, R. A., R Haynes & A. Johnson (eds), Compatible Forest Management. Kluwer Academic Publishers, Dordrecht, The Netherlands: 55–81.

    Google Scholar 

  • Wipfli, M. S., J. P. Hudson, J. P. Caouette & D. T. Chaloner, 2003. Marine subsidies in freshwater ecosystems: salmon carcasses increase the growth rates of stream-resident salmonids. Transactions of the American Fisheries Society 132: 371–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wipfli, M.S., Musslewhite, J. Density of red alder (Alnus rubra) in headwaters influences invertebrate and detritus subsidies to downstream fish habitats in Alaska. Hydrobiologia 520, 153–163 (2004). https://doi.org/10.1023/B:HYDR.0000027734.95586.24

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000027734.95586.24

Navigation