, Volume 519, Issue 1–3, pp 143–152 | Cite as

Disaggregation of Microcystis aeruginosa colonies under turbulent mixing: laboratory experiments in a grid-stirred tank

  • Katherine R. O’Brien
  • David L. Meyer
  • Anya M. Waite
  • Gregory N. Ivey
  • David P. Hamilton


Samples of the cyanobacterium Microcystis aeruginosa from a small pond were used in laboratory experiments with a grid-stirred tank to quantify the effect of turbulent mixing on colony size. Turbulent dissipation in the tank was varied from 10−9 m2 s−3 to 10−4 m2 s−3, covering the range of turbulence intensities experienced by M. aeruginosa colonies in the field and exceeding the maximum dissipation by two orders of magnitude. Large colonies broke up into smaller colonies during the experiments; the mass fraction of colonies with diameter less than 200 μm increased over time. Colony disaggregation was observed to increase with turbulent dissipation. The maximum stable colony diameter across all experiments was in the range 220–420 μm. The overall change in size distribution during the experiments was relatively small, and the colony size distribution remained very broad throughout the experiments. Since colony size affects migration velocity, susceptibility to grazing and surface area to volume ratios, more work is needed to determine how to best represent this broad size distribution when modelling M. aeruginosa populations.

Microcystis aeruginosa colony size aggregation disaggregation turbulent mixing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A. L., T. C. Granata, C. C. Gotschalk & T. D. Dickey, 1990. The physical strength of marine snow and its implications for particle disaggregation in the ocean. Limnology & Oceanography 35: 1415–1428.Google Scholar
  2. Brookes, J. D., G. G. Ganf, D. Green & J. Whittington, 1999. The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis. Journal of Plankton Research 21: 327–341.CrossRefGoogle Scholar
  3. DeSilva, I. P. D. & H. J. S. Fernando, 1994. Oscillating grids as a source of nearly isotropic turbulence. Physics of Fluids 6: 2455–2464.CrossRefGoogle Scholar
  4. Falconer, I. R., 1999. An overview of problems caused by toxic blue-green algae (Cyanobacteria) in drinking and recreational water. Environmental Toxicology 14: 5–12.CrossRefGoogle Scholar
  5. Fernando, H. J. S. & I. P. D. DeSilva, 1993. Note on secondary flows in oscillating-grid, mixing-box experiments. Physics of Fluids A 5: 1849–1851.CrossRefGoogle Scholar
  6. Ganf, G. G., 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). Journal of Ecology 62: 611–629.Google Scholar
  7. Ganf, G. G. & R. L. Oliver, 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. Journal of Ecology 70: 829–844.Google Scholar
  8. Gibson, C. H. & W. H. Thomas, 1995. Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate, Gonyaulax polyedra Stein. Journal of Geophysical Research 100: 24841–24846.CrossRefGoogle Scholar
  9. Grossart, H. & M. Simon, 1993. Limnetic macroscopic organic aggregates (lake snow): Occurrence, characteristics, and microbial dynamics in Lake Constance. Limnology & Oceanography 38: 532–546.Google Scholar
  10. Hill, P. S., 1992. Reconciling aggregation theory with observed vertical fluxes following phytoplankton blooms. Journal of Geophysical Research 97: 2295–2308.CrossRefGoogle Scholar
  11. Hill, P. S., G. Voulgaris & J. H. Trowbridge, 2001. Controls on floc size in a continental shelf bottom boundary layer. Journal of Geophysical Research 106: 9543–9549.CrossRefGoogle Scholar
  12. Hogg, R. V. & J. Ledolter, editors 1987. Engineering Statistics. Macmillan Publishing Company, New York.Google Scholar
  13. Humphries, S. E. & V. D. Lyne, 1988. Cyanophyte blooms: The role of cell buoyancy. Limnology & Oceanography 33: 79–91.CrossRefGoogle Scholar
  14. Hutchinson, G. E., 1957. A treatise on limnology. John Wiley & Sons Inc., New York.Google Scholar
  15. Ibelings, B. W., 1992. Cyanobacterial waterblooms: the role of buoyancy in watercolumns of varying stability. PhD thesis. The University of Amsterdam.Google Scholar
  16. Ibelings, B. W., L. R. Mur, R. Kinsman & A. E. Walsby, 1991a. Microcystis changes its buoyancy in response to the average irradiance in the surface mixed layer. Archiv für Hydrobiologie 120: 385–401.Google Scholar
  17. Ibelings, B. W., L. R. Mur & A. E. Walsby, 1991b. Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. Journal of Plankton Research 13: 419–436.Google Scholar
  18. Jackson, G. A. & A. B. Burd, 1998. Aggregation in the marine environment. Environmental Science & Technology 32: 2805–2814.Google Scholar
  19. Jackson, G. A. & S. Lochmann, 1993. Modelling coagulation of algae in marine ecosystems. In J. Buffle & H. P. van Leeuwen (ed.) Environmental Particles Vol. 2. Lewis Publishers, Florida: 387–414.Google Scholar
  20. Kirk, J. T. O., 1975. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. spherical cells. New Phytologist 75: 21–36.Google Scholar
  21. Kit, E. L. G., E. J. Strang & H. J. S. Fernando, 1997. Measurement of turbulence near shear-free density interfaces. Journal of Fluid Mechanics 334: 293–314.CrossRefGoogle Scholar
  22. Mitrovic, S. M., L. C. Bowling & R. T. Buckney, 2001. Quantifying potential benefits to Microcystis aeruginosa through disentrainment by buoyancy within an embayment of a freshwater river. Journal of Freshwater Ecology 16: 151–157.Google Scholar
  23. Moisander, P. H., J. L. Hench, K. Kononen & H. W. Paerl, 2002. Small-scale shear effects on heterocystous cyanobacteria. Limnology & Oceanography 47: 108–119.CrossRefGoogle Scholar
  24. Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia, in press.Google Scholar
  25. Noh, Y. & H. J. S. Fernando, 1993. The role of molecular diffusion in the deepening of the mixed layer. Dynamics of Atmospheres & Oceans 17: 187–215.Google Scholar
  26. O’Brien, K. R., 2002. The effects of turbulent mixing on the vertical distribution and biomass of phytoplankton populations. PhD thesis. The University of Western Australia.Google Scholar
  27. Oliver, R. L. & G. G. Ganf, 2000. Freshwater blooms. In Whitton, B. A. & M. Potts (ed.) The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht: 149–194.Google Scholar
  28. Padisák, J., É. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton-an experimental study. Hydrobiologia 500: 243–257.CrossRefGoogle Scholar
  29. Parker, D. S., W. J. Kaufman & D. Jenkins, 1972. Floc breakup in turbulent flocculation processes. Journal of the Sanitary Engineering Division of the American Society of Civil Engineers 98: 79–99.Google Scholar
  30. Regel, R. H., J. D. Brookes, G. G. Ganf & R.W. Griffiths, 2003. The influence of experimentally generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain. Hydrobiologia, in press.Google Scholar
  31. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge UK.Google Scholar
  32. Reynolds, C. S., 1997a. The control and management of cyanobacterial blooms. In Australian Society of Limnologists 36th Congress Symposia: 6-22.Google Scholar
  33. Reynolds, C. S., 1997b. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Germany.Google Scholar
  34. Reynolds, C. S., 1998. Plants in motion: Physical-biological interaction in the plankton. In J. Imberger (ed.) Physical Processes in Lakes and Oceans. American Geophysical Union Washington, U.S.A.: 535–560.Google Scholar
  35. Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine & Freshwater Research 21: 379–390.CrossRefGoogle Scholar
  36. Robarts, R. D. & T. Zohary, 1984. Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeesport Dam, South Africa). Journal of Ecology 72: 1001–1017.Google Scholar
  37. Smith, D. K.W. & J. A. Kitchener, 1978. The strength of aggregates formed in flocculation. Chemical Engineering Science 33: 1631–1636.CrossRefGoogle Scholar
  38. Tennekes, H. & J. L. Lumley, 1994. A first course in turbulence (2nd ed.). MIT Press, Boston USA.Google Scholar
  39. Thomas, W. H. & C. H. Gibson, 1990. Effects of small scale turbulence on microalgae. Journal of Applied Phycology 2: 71–77.Google Scholar
  40. Visser, P. M., J. Passarge & L. R. Mur, 1997. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349: 99–109.CrossRefGoogle Scholar
  41. Waite, A. M., S. Gallagher & H. G. Dam, 1997. New measurements of phytoplankton aggregation in a flocculator using videography and image analysis. Marine Ecology Progress Series 155: 77–88.Google Scholar
  42. Wallace, B. B. & D. P. Hamilton, 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnology & Oceanography 44: 273–381.CrossRefGoogle Scholar
  43. Wüest, A. & A. Lorke, 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Katherine R. O’Brien
    • 1
  • David L. Meyer
    • 1
  • Anya M. Waite
    • 1
  • Gregory N. Ivey
    • 1
  • David P. Hamilton
    • 1
  1. 1.Centre for Water ResearchUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations